We investigate modeling the dynamics of an electrostatically actuated resonator using the perturbation method of multiple time scales (MTS). First, we discuss two approaches to treat the nonlinear parallel-plate electrostatic force in the equation of motion and their impact on the application of MTS: expanding the force in Taylor series and multiplying both sides of the equation with the denominator of the forcing term. Considering a spring–mass–damper system excited electrostatically near primary resonance, it is concluded that, with consistent truncation of higher-order terms, both techniques yield same modulation equations. Then, we consider the problem of an electrostatically actuated resonator under simultaneous superharmonic and primary resonance excitation and derive a comprehensive analytical solution using MTS. The results of the analytical solution are compared against the numerical results obtained by long-time integration of the equation of motion. It is demonstrated that along with the direct excitation components at the excitation frequency and twice of that, higher-order parametric terms should also be included. Finally, the contributions of primary and superharmonic resonance toward the overall response of the resonator are examined.

References

References
1.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
,
J. R.
,
1967
, “
The Resonant Gate Transistor
,”
IEEE Trans. Electron. Devices
,
14
(
3
), pp.
117
133
.
2.
Zhang
,
W.
, and
Turner
,
K. L.
,
2005
, “
Application of Parametric Resonance Amplification in a Single-Crystal Silicon Micro-Oscillator Based Mass Sensor
,”
Sens. Actuators A
,
122
(
1
), pp.
23
30
.
3.
Hafiz
,
M. A. A.
,
Kosuru
,
L.
, and
Younis
,
M. I.
,
2016
, “
Microelectromechanical Reprogrammable Logic Device
,”
Nat. Commun.
,
7
, p.
11137
.
4.
Ilyas
,
S.
,
Jaber
,
N.
, and
Younis
,
M. I.
,
2017
, “
MEMS Logic Using Mixed-Frequency Excitation
,”
J. Microelectromech. Syst.
,
26
(
5
), pp.
1140
1146
.
5.
Wong
,
A. C.
, and
Nguyen
,
C. C.
,
2004
, “
Micromechanical Mixer-Filters (“Mixlers”)
,”
J. Microelectromech. Syst.
,
13
(
1
), pp.
100
112
.
6.
Ilyas
,
S.
,
Chappanda
,
K. N.
, and
Younis
,
M. I.
, 2017, “
Exploiting Nonlinearities of Micro-Machined Resonators for Filtering Applications
,”
Appl. Phys. Lett.
,
110
(
25
), p.
253508
.
7.
Pourkamali
,
S.
, and
Ayazi
,
F.
,
2005
, “
Electrically Coupled MEMS Bandpass Filters—Part I: With Coupling Element
,”
Sens. Actuators A
,
122
(
2
), pp.
307
316
.
8.
Kacem
,
N.
,
Hentz
,
S.
,
Pinto
,
D.
,
Reig
,
B.
, and
Nguyen
,
V.
,
2009
, “
Nonlinear Dynamics of Nanomechanical Beam Resonators: Improving the Performance of NEMS-Based Sensors
,”
Nanotechnology.
,
20
(
27
), p.
275501
.
9.
Guerra
,
D. N.
,
Bulsara
,
A. R.
,
Ditto
,
W. L.
,
Sinha
,
S.
,
Murali
,
K.
, and
Mohanty
,
P.
,
2010
, “
A Noise-Assisted Reprogrammable Nanomechanical Logic Gate
,”
Nano Lett.
,
10
(
4
), pp.
1168
1171
.
10.
Jalil
,
J.
,
Zhu
,
Y.
,
Ekanayake
,
C.
, and
Ruan
,
Y.
,
2017
, “
Sensing of Single Electrons Using Micro and Nano Technologies: A Review
,”
Nanotechnology
,
28
(
14
), p.
142002
.
11.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley
,
Weinheim, Germany
.
12.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
Weinheim, Germany
.
13.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
91
117
.
14.
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2003
, “
Secondary Resonances of Electrically Actuated Resonant Microsensors
,”
J. Micromech. Microeng.
,
13
(
3
), p.
491
.
15.
Nayfeh
,
A. H.
,
1984
, “
Quenching of Primary Resonance by a Superharmonic Resonance
,”
J. Sound Vib.
,
92
(
3
), pp.
363
377
.
16.
Nayfeh
,
A. H.
,
1983
, “
The Response of Single Degree-of-Freedom Systems With Quadratic and Cubic Non-Linearities to a Subharmonic Excitation
,”
J. Sound Vib.
,
89
(
4
), pp.
457
470
.
17.
Kacem
,
N.
,
Baguet
,
S.
,
Duraffourg
,
L.
,
Jourdan
,
G.
,
Dufour
,
R.
, and
Hentz
,
S.
,
2015
, “
Overcoming Limitations of Nanomechanical Resonators With Simultaneous Resonances
,”
Appl. Phys. Lett.
,
107
(
7
), p.
073105
.
18.
Ilyas
,
S.
,
Alfosail
,
F.
, and
Younis
,
M. I.
,
2018
, “
On the Response of MEMS Resonators Under Generic Electrostatic Loadings: Experiments and Applications
,”
Nonlinear Dynamics
(accepted).
19.
Zhang
,
W. M.
, and
Guang
,
M.
,
2007
, “
Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation
,”
IEEE Sensors.
,
7
(
3
), pp.
370
380
.
20.
Caruntu
,
D. I.
, and
Martinez
,
I.
,
2014
, “
Reduced Order Model of Parametric Resonance of Electrostatically Actuated MEMS Cantilever Resonators
,”
Int. J. Non-Linear Mech.
,
66
, pp.
28
32
.
21.
Kacem
,
N.
,
Baguet
,
S.
,
Dufour
,
R.
, and
Hentz
,
S.
,
2011
, “
Stability Control of Nonlinear Micromechanical Resonators Under Simultaneous Primary and Superharmonic Resonances
,”
Appl. Phys. Lett.
,
98
(
19
), p.
193507
.
22.
Nayfeh
,
A. H.
,
1985
, “
The Response of Non-Linear Single-Degree-of-Freedom Systems to Multifrequency Excitations
,”
J. Sound Vib.
,
102
(
3
), pp.
403
414
.
23.
Chen
,
C.
,
Zanette
,
D. H.
,
Guest
,
J. R.
,
Czaplewski
,
D. A.
, and
López
,
D.
,
2016
, “
Self-Sustained Micromechanical Oscillator With Linear Feedback
,”
Phys. Rev. Lett.
,
117
, p.
017203
.
24.
Elshurafa
,
A. M.
,
Khirallah
,
K.
,
Tawfik
,
H. H.
,
Emira
,
A.
,
Aziz
,
A. K. A.
, and
Sedky
,
S. M.
,
2011
, “
Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
943
958
.
25.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non-Linear Mech.
,
45
(
7
), pp.
704
713
.
26.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011009
.
27.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2005
, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
,
15
(
10
), p.
1840
.
28.
Alsaleem
,
F. M.
,
Younis
,
M. I.
, and
Ouakad
,
H. M.
,
2009
, “
On the Nonlinear Resonances and Dynamic Pull-In of Electrostatically Actuated Resonators
,”
J. Micromech. Microeng.
,
19
(
4
), p.
045013
.
29.
Jin
,
Z.
, and
Wang
,
Y.
,
1998
, “
Electrostatic Resonator With Second Superharmonic Resonance
,”
Sens. Actuators. A
,
64
(
3
), pp.
273
279
.
30.
Younis
,
M. I.
, and
Alsaleem
,
F.
,
2009
, “
Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021010
.
31.
Ouakad
,
H. M.
,
Alofi
,
A. M.
, and
Nayfeh
,
A. H.
,
2017
, “
Dynamic Analysis of Multilayers Based MEMS Resonators
,”
Math. Probl. Eng.
,
2017
, p.
1262650
.
32.
Azizi
,
S.
,
Chorsi
,
M. T.
, and
Nejad
,
F. B.
,
2016
, “
On the Secondary Resonance of a MEMS Resonator: A Conceptual Study Based on Shooting and Perturbation Methods
,”
Int. J. Non-Linear Mech.
,
82
, pp.
59
68
.
33.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
,
2006
, “
The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,”
J. Micromech. Microeng.
,
16
(
5
), p.
890
.
34.
Elnaggar
,
A. M.
,
Khalil
,
K. M.
, and
Rahby
,
A. S.
,
2016
, “
Harmonic Solution of a Weakly Nonlinear Second Order Differential Equation Governed the Motion of a TM-AFM Cantilever
,”
Br. J. Math. Comput. Sci.
,
15
(
4
), pp.
1
11
.
35.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
36.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer Science and Business Media
,
New York
.
You do not currently have access to this content.