Function realization of mechanical systems can be considered as a series of constrained motions with the governing equations of mechanical systems constructed as the dynamic equations at the acceleration level. In the process of solving the dynamic equation, small numerical errors may appear on each integration step, and the errors accumulated might result in constraint violation, leading to difficulties in satisfying constraint at the velocity level and position level. Currently, constraint violation errors stabilization can be implemented through correcting acceleration or velocity equation; however, it is difficult to have an accurate control of the violation error threshold with these methods. On the basis of constraint direct correction method, this paper provides a control method of constraint violation errors, which can limit the constraint violation errors within a specific threshold range required by specific numerical simulation accuracy for the mechanical system. A dynamic model of a three-dimensional (3D) RRR (R, rotating) manipulator is constructed, followed by the implementation of dynamic simulation based on Udwadia–Kalaba method. A comparison between the previous methods and the current one is then made to analyze the control of the constraint violation errors in simulations, and the results show that the proposed method is effective in reducing violation errors to a specified range.

References

References
1.
Rahnejat
,
H.
,
2000
, “
Multi-Body Dynamics: Historical Evolution and Application
,”
Proc. Inst. Mech. Eng., Part C
,
214
(
1
), pp.
149
173
.
2.
Eberhard
,
P.
, and
Schiehlen
,
W.
,
2006
, “
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
3
12
.
3.
Schiehlen
,
W.
,
2007
, “
Research Trends in Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
18
(
1
), pp.
3
13
.
4.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), pp.
1
8
.
5.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. Math. Phys. Sci.
,
439
(
1906
), pp.
407
410
.
6.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1996
, “
Equations of Motion for Mechanical Systems: A Unified Approach
,”
J. Aerosp. Eng.
,
9
(
3
), pp.
64
69
.
7.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2006
, “
Explicit Equations of Motion for Constrained Mechanical Systems With Singular Mass Matrices and Applications to Multi-Body Dynamics
,”
Proc. R. Soc. A
,
462
(
2071
), pp.
2097
2117
.
8.
Schutte
,
A.
, and
Udwadia
,
F.
,
2011
, “
New Approach to the Modeling of Complex Multibody Dynamical Systems
,”
ASME J. Appl. Mech.
,
78
(
2
), pp.
856
875
.
9.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2013
, “
On General Nonlinear Constrained Mechanical Systems
,”
Numer. Algebra, Control Optim.
,
3
(
3
), pp.
425
443
.
10.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2014
, “
Control of Uncertain Nonlinear Multibody Mechanical Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041020
.
11.
Udwadia
,
F. E.
,
Wanichanon
,
T.
, and
Cho
,
H.
,
2014
, “
Methodology for Satellite Formation-Keeping in the Presence of System Uncertainties
,”
J. Guid. Control Dyn.
,
37
(
5
), pp.
1611
1624
.
12.
Udwadia
,
F. E.
,
2003
, “
A New Perspective on the Tracking Control of Nonlinear Structural and Mechanical Systems
,”
Proc. Math. Phys. Eng. Sci.
,
459
(
2035
), pp.
1783
1800
.
13.
Lam
,
T.
,
2006
, “
New Approach to Mission Design Based on the Fundamental Equations of Motion
,”
J. Aerosp. Eng.
,
19
(
2
), pp.
59
67
.
14.
Lin
,
T. M.
,
Dong-Xu
,
L. I.
, and
Hao
,
C.
,
2010
, “
An Attitude Control Method Based on Constrained Motion Theory for Extravehicular Activity Rescue by Astronaut
,”
J. Astronaut.
,
31
(
2
), pp.
602
607
.
15.
Cho
,
H.
, and
Udwadia
,
F. E.
,
2013
, “
Explicit Control Force and Torque Determination for Satellite Formation-Keeping With Attitude Requirements
,”
J. Guid. Control Dyn.
,
36
(
2
), pp.
589
605
.
16.
Schutte
,
A. D.
, and
Dooley
,
B. A.
,
2005
, “
Constrained Motion of Tethered Satellites
,”
J. Aerosp. Eng.
,
18
(
4
), pp.
242
250
.
17.
Baumgarte
,
J. W.
,
1972
, “
Stabilization of Constraints and Integrals of Motion
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
18.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
,
1994
, “
Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1058
1064
.
19.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
Silva
,
M. T. D.
,
2011
, “
A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011019
.
20.
Blajer
,
W.
,
2011
, “
Methods for Constraint Violation Suppression in the Numerical Simulation of Constrained Multibody Systems–A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1568
1576
.
21.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2012
, “
Simulation of Constrained Mechanical Systems—Part I: An Equation of Motion
,”
ASME J. Appl. Mech.
,
79
(
4
), p.
041017
.
22.
Rahmatalla
,
S.
,
Lee
,
E. T.
, and
Eun
,
H. C.
,
2013
, “
Numerical Integration Scheme to Reduce the Errors in the Satisfaction of Constrained Dynamic Equation
,”
J. Mech. Sci. Technol.
,
27
(
4
), pp.
941
949
.
23.
Zhang
,
J.
,
Liu
,
D.
, and
Liu
,
Y.
,
2016
, “
A Constraint Violation Suppressing Formulation for Spatial Multibody Dynamics With Singular Mass Matrix
,”
Multibody Syst. Dyn.
,
36
(
1
), pp.
87
110
.
24.
Marques
,
F.
,
Souto
,
A. P.
, and
Flores
,
P.
,
2017
, “
On the Constraints Violation in Forward Dynamics of Multibody Systems
,”
Multibody Syst. Dyn.
,
39
(
4
), pp.
385
419
.
25.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.
26.
Baumgarte
,
J. W.
,
1983
, “
A New Method of Stabilization for Holonomic Constraints
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
869
870
.
27.
Lyu
,
G.
, and
Liu
,
R.
,
2018
, “
Determination of Stability Correction Parameters for Dynamic Equations of Constrained Multibody Systems
,”
Math. Probl. Eng.
,
2018
, pp.
1
10
.
28.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
37–40
), pp.
3151
3160
.
29.
Liu
,
J.
, and
Liu
,
R.
,
2016
, “
Simple Method to the Dynamic Modeling of Industrial Robot Subject to Constraint
,”
Adv. Mech. Eng.
,
8
(
4
), pp.
1
9
.
30.
Xu
,
Y.
, and
Liu
,
R.
,
2017
, “
Concise Method to the Dynamic Modeling of Climbing Robot
,”
Adv. Mech. Eng.
,
9
(
2
), pp.
1
10
.
31.
Blajer
,
W.
,
2002
, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems
,”
Multibody Syst. Dyn.
,
7
(
3
), pp.
265
284
.
32.
Blajer
,
W.
,
1997
, “
A Geometric Unification of Constrained System Dynamics
,”
Multibody Syst. Dyn.
,
1
(
1
), pp.
3
21
.
33.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
2001
, “
Explicit Equations of Motion for Mechanical Systems With Nonideal Constraints
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
462
467
.
34.
Spong
,
W. M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
New York
, p.
496
.
35.
Nikravesh
,
P. E.
,
2007
, “
Initial Condition Correction in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
18
(
1
), pp.
107
115
.
You do not currently have access to this content.