This paper deals with the approximate solution of nonlinear stochastic Itô–Volterra integral equations (NSIVIE). First, the solution domain of these nonlinear integral equations is divided into a finite number of subintervals. Then, the Chebyshev–Gauss–Radau points along with the Lagrange interpolation method are employed to get approximate solution of NSIVIE in each subinterval. The method enjoys the advantage of providing the approximate solutions in the entire domain accurately. The convergence analysis of the numerical method is also provided. Some illustrative examples are given to elucidate the efficiency and applicability of the proposed method.

References

References
1.
Kloeden
,
P. E.
, and
Platen
,
E.
,
1999
, “
Numerical Solution of Stochastic Differential Equations
,”
Applications of Mathematics
,
Springer
,
Berlin
.
2.
Oksendal
,
B.
,
1998
,
Stochastic Differential Equations: An Introduction With Applications
,
5th ed.
,
Springer
,
New York
.
3.
Mohammadi
,
F.
,
2015
, “
A Wavelet-Based Computational Method for Solving Stochastic Itô-Volterra Integral Equations
,”
J. Comput. Phys.
,
298
, pp.
254
265
.
4.
Kamrani
,
M.
,
2015
, “
Numerical Solution of Stochastic Fractional Differential Equations
,”
Numer. Algorithms
,
68
(
1
), pp.
81
93
.
5.
Bastani
,
A. F.
, and
Damircheli
,
D.
,
2017
, “
An Adaptive Algorithm for Solving Stochastic Multi-Point Boundary Value Problems
,”
Numer. Algorithms
,
74
(
4
), pp.
1119
1143
.
6.
Akhtari
,
B.
,
Babolian
,
E.
, and
Bastani
,
A. F.
,
2015
, “
An Adaptive Weak Continuous Euler-Maruyama Method for Stochastic Delay Differential Equations
,”
Numer. Algorithms
,
69
(
1
), pp.
29
57
.
7.
Mohammadi
,
F.
,
2016
, “
Numerical Solution of Stochastic Itô-Volterra Integral Equations Using Haar Wavelets
,”
Numer. Math. Theory Methods Appl.
,
9
(
3
), pp.
416
431
.
8.
Mohammadi
,
F.
,
2016
, “
Second Kind Chebyshev Wavelet Galerkin Method for Stochastic Itô-Volterra Integral Equations
,”
Mediterr. J. Math.
,
13
(
5
), pp.
2613
2631
.
9.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
,
Shakiba
,
A.
, and
Cattani
,
C.
,
2016
, “
Legendre Wavelets Galerkin Method for Solving Nonlinear Stochastic Integral Equations
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1185
1202
.
10.
Saffarzadeh
,
M.
,
Loghmani
,
G. B.
, and
Heydari
,
M.
,
2018
, “
An Iterative Technique for the Numerical Solution of Nonlinear Stochastic Itô-Volterra Integral Equations
,”
J. Comput. Appl. Math.
,
333
, pp.
74
86
.
11.
Mirzaee
,
F.
, and
Samadyar
,
N.
,
2018
, “
Numerical Solution of Nonlinear Stochastic Itô-Volterra Integral Equations Driven by Fractional Brownian Motion
,”
Math Methods Appl. Sci.
,
41
(
4
), pp.
1410
1423
.
12.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
,
Ghaini
,
F. M.
, and
Cattani
,
C.
,
2014
, “
A Computational Method for Solving Stochastic Itô-Volterra Integral Equations Based on Stochastic Operational Matrix for Generalized Hat Basis Functions
,”
J. Comput. Phys.
,
270
, pp.
402
415
.
13.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
,
Cattani
,
C.
, and
Ghaini
,
F. M.
,
2015
, “
An Efficient Computational Method for Solving Nonlinear Stochastic Itô Integral Equations: Application for Stochastic Problems in Physics
,”
J. Comput. Phys.
,
283
, pp.
148
168
.
14.
Badr
,
A. A.
, and
El-Hoety
,
H. S.
,
2012
, “
Monte Carlo Galerkin Approximation of Fractional Stochastic Integro-Differential Equation
,”
Math. Probl. Eng.
,
2012
, pp.
1
14
.
15.
Maleknejad
,
K.
,
Khodabin
,
M.
, and
Rostami
,
M.
,
2012
, “
Numerical Solutions of Stochastic Volterra Integral Equations by a Stochastic Operational Matrix Based on Block Pulse Functions
,”
Appl. Math. Model.
,
55
(
3-4
), pp.
791
800
.
16.
Khodabin
,
M.
,
Maleknejad
,
K.
, and
Hoseini
,
S. F.
,
2011
, “
Application of Triangular Functions to Numerical Solution of Stochastic Volterra Integral Equations
,”
IAENG Int. J. Appl. Math.
,
43
(
1
), pp.
1
9
.http://www.iaeng.org/IJAM/issues_v43/issue_1/IJAM_43_1_01.pdf
17.
Mirzaee
,
F.
,
Samadyar
,
N.
, and
Hoseini
,
S. F.
,
2018
, “
Euler Polynomial Solutions of Nonlinear Stochastic Itô-Volterra Integral Equations
,”
J Comput. Appl. Math.
,
330
, pp.
574
585
.
18.
Mirzaee
,
F.
, and
Hoseini
,
S. F.
,
2015
, “
Numerical Approach for Solving Nonlinear Stochastic Itô-Volterra Integral Equation Using Fibonacci Operational Matrices
,”
Sci. Iran.
,
22
(
6
), pp.
2472
2481
.http://scientiairanica.sharif.edu/article_3797.html
19.
Mirzaee
,
F.
, and
Hadadiyan
,
E.
,
2014
, “
A Collocation Technique for Solving Nonlinear Stochastic Itô-Volterra Integral Equations
,”
Appl. Math. Comput.
,
247
(
15
), pp.
1011
1020
.
20.
Khodabin
,
M.
,
Maleknejad
,
K.
,
Rostami
,
M.
, and
Nouri
,
M.
,
2012
, “
Numerical Approach for Solving Stochastic Volterra-Fredholm Integral Equations by Stochastic Operational Matrix
,”
Comput. Math. Appl.
,
64
(
6
), pp.
1903
1913
.
21.
Mohammadi
,
F.
,
2016
, “
Numerical Solution of Stochastic Volterra-Fredholm Integral With Haar Wavelets
,”
U.P.B Sci. Bull., Ser. A
,
78
(
2
), pp.
111
126
.https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full2f0_355643.pdf
22.
Mohammadi
,
F.
,
2016
, “
A Computational Wavelet Method for Numerical Solution of Stochastic Volterra-Fredholm Integral Equations
,”
Wavelet Linear Algebra
,
3
(
1
), pp.
13
25
.http://wala.vru.ac.ir/article_19924.html
23.
Fallahpour
,
M.
,
Maleknejad
,
K.
, and
Khodabin
,
M.
,
2015
, “
Approximation Solution of Two-Dimensional Linear Stochastic Fredholm Integral Equation by Applying the Haar Wavelet
,”
Int. J. Math. Modell. Comput.
,
5
(
4
), pp.
361
372
.http://ijm2c.iauctb.ac.ir/article_521906.html
24.
Mirzaee
,
F.
, and
Samadyar
,
N.
,
2018
, “
Using Radial Basis Functions to Solve Two Dimensional Linear Stochastic Integral Equations on Non-Rectangular Domains
,”
Eng. Anal. Boundary Elem.
,
92
, pp.
180
195
.
25.
Wang
,
K.
, and
Wang
,
Q.
,
2013
, “
Lagrange Collocation Method for Solving Volterra-Fredholm Integral Equations
,”
Appl. Math. Comput.
,
219
(
21
), pp.
10434
10440
.
26.
Berrut
,
J. P.
,
Hoseini
,
S. A.
, and
Klein
,
G.
,
2014
, “
The Linear Barycentric Rational Quadrature Method for Volterra Integral Equations
,”
SIAM J. Sci. Comput.
,
36
(
1
), pp.
105
123
.
27.
Jafarzadeh
,
Y.
, and
Keramati
,
B.
,
2016
, “
Numerical Method for a System of Integro-Differential Equations by Lagrange Interpolation
,”
Asian-Eur. J. Math.
,
9
(
4
), p.
1650077
.
28.
Rivlin
,
R. J.
,
1979
,
An Introduction to the Approximation of Functions
,
Blaisdell
,
Waltham, MA
.
29.
Stoer
,
J.
, and
Bulirsch
,
R.
,
2002
,
Introduction to Numerical Analysis
,
3rd ed.
,
Springer
,
New York
.
30.
Allen
,
M. B.
, and
Isaacson
,
E. L.
,
1998
,
Numerical Analysis for Applied Science
,
Wiley
,
New York
.
31.
Brunner
,
H.
,
2004
,
Collocation Methods for Volterra Integral and Related Functional Differential Equations
,
Cambridge University Press
,
London
.
32.
Gu
,
Z.
, and
Chen
,
Y.
,
2015
, “
Piecewise Legendre Spectral-Collocation Method for Volterra Integro-Differential Equations
,”
LMS J. Comput. Math.
,
18
(
1
), pp.
231
249
.
33.
Yang
,
K.
, and
Zhang
,
R.
,
2011
, “
Analysis of Continuous Collocation Solutions for a Kind of Volterra Functional Integral Equations With Proportional Delay
,”
J. Comput. Appl. Math.
,
236
(
5
), pp.
743
752
.
34.
Brunner
,
H.
,
Xie
,
H.
, and
Zhang
,
R.
,
2011
, “
Analysis of Collocation Solutions for a Class of Functional Equations With Vanishing Delays
,”
IMA J. Numer. Anal.
,
31
(
2
), pp.
698
718
.
35.
Canuto
,
C.
,
Hussaini
,
M.
,
Quarteroni
,
A.
, and
Zang
,
T.
,
2007
,
Spectral Methods: Fundamentals in Single Domains
,
Springer
,
Berlin
.
36.
Higham
,
D. J.
,
2001
, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
,
43
(
3
), pp.
525
546
.
37.
Chen
,
X.
,
Qi
,
Y.
, and
Yang
,
C.
,
2012
, “
New Existence Theorems About the Solutions of Some Stochastic Integral Equations
,” e-print
arXiv:1211.1249
.https://arxiv.org/pdf/1211.1249.pdf
38.
Liu
,
M.
, and
Wang
,
K.
,
2013
, “
A Note on Stability of Stochastic Logistic Equation
,”
Appl. Math. Lett.
,
26
(
6
), pp.
601
606
.
39.
Gard
,
T. C.
,
1988
,
Introduction to Stochastic Differential Equations
,
Dekker
,
New York
.
You do not currently have access to this content.