This paper investigates the voltage–amplitude response of superharmonic resonance of second order (order two) of alternating current (AC) electrostatically actuated microelectromechanical system (MEMS) cantilever resonators. The resonators consist of a cantilever parallel to a ground plate and under voltage that produces hard excitations. AC frequency is near one-fourth of the natural frequency of the cantilever. The electrostatic force includes fringe effect. Two kinds of models, namely reduced-order models (ROMs), and boundary value problem (BVP) model, are developed. Methods used to solve these models are (1) method of multiple scales (MMS) for ROM using one mode of vibration, (2) continuation and bifurcation analysis for ROMs with several modes of vibration, (3) numerical integration for ROM with several modes of vibration, and (4) numerical integration for BVP model. The voltage–amplitude response shows a softening effect and three saddle-node bifurcation points. The first two bifurcation points occur at low voltage and amplitudes of 0.2 and 0.56 of the gap. The third bifurcation point occurs at higher voltage, called pull-in voltage, and amplitude of 0.44 of the gap. Pull-in occurs, (1) for voltage larger than the pull-in voltage regardless of the initial amplitude and (2) for voltage values lower than the pull-in voltage and large initial amplitudes. Pull-in does not occur at relatively small voltages and small initial amplitudes. First two bifurcation points vanish as damping increases. All bifurcation points are shifted to lower voltages as fringe increases. Pull-in voltage is not affected by the damping or detuning frequency.

References

References
1.
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-in Instability in MEMS/NEMS: A Review
,”
Sens. Actuators A: Phys.
,
214
, pp.
187
218
.
2.
Caruntu
,
D. I.
,
Martinez
,
I.
, and
Knecht
,
M. W.
,
2016
, “
Parametric Resonance Voltage Response of Electrostatically Actuated Micro-Electro-Mechanical System Cantilever Resonators
,”
J. Sound Vib.
,
362
, pp.
203
213
.
3.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Behaviour of Electrically Actuated MEMS Resonators
,”
Int. J. Eng. Sci.
,
71
, pp.
137
155
.
4.
LaRose
,
R. P.
, III.
, and
Murphy
,
K. D.
,
2010
, “
Impact Dynamics of MEMS Switches
,”
Nonlinear Dyn.
,
60
(
3
), pp.
327
339
.
5.
Persano
,
A.
,
Quaranta
,
F.
,
Martucci
,
M. C.
,
Siciliano
,
P.
, and
Cola
,
A.
,
2015
, “
On the Electrostatic Actuation of Capacitive RF MEMS Switches on GaAs Substrate
,”
Sens. Actuators A
,
232
, pp.
202
207
.
6.
Bogue
,
R.
,
2013
, “
Recent Developments in MEMS Sensors: A Review of Applications, Markets and Technologies
,”
Sensor Rev.
,
33/4
, pp.
300
304
.
7.
Nawi
,
M. N. M.
,
Manaf
,
A. A.
,
Arshad
,
M. R.
, and
Sidek
,
O.
,
2011
, “
Review of MEMS Flow Sensors Based on Artificial Hair Cell Sensor
,”
Microsyst. Technol.
,
17
, pp.
1417
1426
.
8.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2006
, “
Electromechanical Model of Electrically Actuated Narrow Microbeams
,”
J. Microelectromech. Syst.
,
15
(
5
), pp.
1175
1189
.
9.
Caruntu
,
D. I.
, and
Knecht
,
M. W.
,
2015
, “
Microelectromechanical Systems Cantilever Resonators Under Soft Alternating Current Voltage of Frequency Near Natural Frequency
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
4
), p.
041016
.
10.
Zhang
,
W.
, and
Meng
,
G.
,
2005
, “
Nonlinear Dynamical System of Micro-Cantilever Under Combined Parametric and Forcing Excitations in MEMS
,”
Sens. Actuators A: Phys.
,
119
(
2
), pp.
291
299
.
11.
Chen
,
X.
, and
Wu
,
Z.
,
2017
, “
Review on Macromodels of MEMS Sensors and Actuators
,”
Microsyst. Technol.
,
23
(
10
), pp.
4319
4332
.
12.
Yin
,
T.
,
Wang
,
B.
,
Zhou
,
S.
, and
Zhao
,
M.
,
2016
, “
A Size-Dependent Model for Beam-like MEMS Driven by Electrostatic and Piezoelectric Forces: A Variational Approach
,”
Phys. E: Low-Dimensional Syst. Nanostruct.
,
84
, pp.
46
54
.
13.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abel-Rahman
,
E. M.
,
2005
, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
211
236
.
14.
Caruntu
,
D. I.
,
Martinez
,
I.
, and
Knecht
,
M. W.
,
2013
, “
Reduced Order Model Analysis of Frequency Response of Alternating Current Near Half Natural Frequency Electrostatically Actuated MEMS Cantilevers
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031011
.
15.
Najar
,
F.
,
Nayfeh
,
A. H.
,
Abdel-Rahman
,
E. M.
,
Choura
,
S.
, and
El-Borgi
,
S.
,
2010
, “
Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode
,”
J. Vib. Control
,
16
(
9
), pp.
1321
1349
.
16.
Abel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2003
, “
Secondary Resonances of Electrically Actuated Resonant Microsensors
,”
J. Micromech. Microeng.
,
13
, pp.
491
501
.
17.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2005
, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
,
15
(
10
), pp.
1840
1847
.
18.
Al-Ghamdi
,
M. S.
,
Alneamy
,
A. M.
,
Park
,
S.
,
Li
,
B.
,
Khater
,
M. E.
,
Abdel-Rahman
,
E. M.
,
Heppler
,
G. R.
, and
Yavuz
,
M.
,
2017
, “
Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator
,”
Sensors
,
17
(
5
), p.
1121
.
19.
Alsaleem
,
F. A.
,
Younis
,
M. I.
, and
Ouakad
,
H. M.
,
2009
, “
On the Nonlinear Resonances and Dynamic Pull-in of Electrostatically Actuated Resonators
,”
J. Micromech. Microeng.
,
19
(
4
), p.
045013
.
20.
Dwivedy
,
S. K.
, and
Kar
,
R. C.
,
1999
, “
Nonlinear Response of a Parametrically Excited System Using Higher-Order Method of Multiple Scales
,”
Nonlinear Dyn.
,
20
(
2
), pp.
115
130
.
21.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
22.
Caruntu
,
D. I.
,
Martinez
,
I.
, and
Taylor
,
K. N.
,
2013
, “
Voltage-Amplitude Response of Alternating Current Near Half Natural Frequency Electrostatically Actuated MEMS Resonators
,”
Mech. Res. Commun.
,
52
, pp.
25
31
.
23.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
24.
Caruntu
,
D. I.
, and
Martinez
,
I.
,
2014
, “
Reduced Order Model of Parametric Resonance of Electrostatically Actuated MEMS Cantilever Resonators
,”
Int. J. Non-Linear Mech.
,
66
, pp.
28
32
.
25.
Bao
,
M.
, and
Yang
,
H.
,
2007
, “
Squeeze Film Air Damping in MEMS
,”
Sens. Actuators A
,
136
(
1
), pp.
3
27
.
26.
Caruntu
,
D. I.
, and
Taylor
,
K. N.
,
2014
, “
Bifurcation Type Change of AC Electrostatically Actuated MEMS Resonators Due to DC Bias
,”
Shock Vib.
,
2014
, p.
542023
.
27.
Lakrad
,
F.
, and
Belhaq
,
M.
,
2010
, “
Suppression of Pull-in Instability in MEMS Using a High-Frequency Actuation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
11
), pp.
3640
3646
.
28.
Doedel
,
E. J.
, and
Oldeman
,
B. E.
,
2012
,
AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations
,
Concordia University
,
Montreal, QC, Canada
.
29.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The MATLAB ODE Suite
,”
SIAM: J. Sci. Comput.
,
18
, pp.
1
22
.
30.
Shampine
,
L. F.
,
Reichelt
,
M. W.
, and
Kierzenka
,
J. A.
,
1999
, “
Solving Index-1 DAEs in MATLAB and Simulink
,”
SIAM Rev.
,
41
(
3
), pp.
538
552
.
31.
Kierzenka
,
J. A.
, and
Shampine
,
L. F.
,
2001
, “
A BVP Solver Based on Residual Control and the MATLAB PSE
,”
ACM Trans. Math. Software
,
27
(
3
), pp.
299
316
.
32.
Labuschagne
,
A.
,
van Renburg
,
N. F. J.
, and
van der Merwe
,
A. J.
,
2009
, “
Comparison of Linear Beam Theories
,”
Math. Comput. Modell.
,
49
(
1–2
), pp.
20
30
.
33.
Caruntu
,
D. I.
,
2007
, “
Classical Jacobi Polynomials, Closed-Form Solutions for Transverse Vibrations
,”
J. Sound Vib.
,
306
(
3–5
), pp.
467
494
.
34.
Caruntu
,
D. I.
,
2009
, “
Dynamic Modal Characteristics of Transverse Vibrations of Cantilevers of Parabolic Thickness
,”
Mech. Res. Commun.
,
33
(
3
), pp.
391
404
.
35.
Caruntu
,
D. I.
,
2013
, “
Factorization of Self-Adjoint Ordinary Differential Equations
,”
Appl. Math. Comput.
,
219
(
14
), pp.
7622
7631
.
36.
Nguyen
,
C. C.
, and
Li
,
W. L.
,
2017
, “
Effect of Gas on the Quality Factors of Micro-Beam Resonators
,”
Microsyst. Technol.
,
23
(
8
), pp.
3185
3199
.
37.
Guo
,
X.
, and
Alexeenko
,
A.
,
2009
, “
Compact Model on Rarefied Flow Simulations
,”
J. Micromech. Microeng.
,
19
(
4
), p.
045026
.
38.
Lee
,
J. W.
,
Tung
,
R.
,
Raman
,
A.
,
Sumali
,
H.
, and
Sullivan
,
J. P.
,
2009
, “
Squeeze-Film Damping of Flexible Microcantilevers at Low Ambient Pressures: Theory and Experiments
,”
J. Micromech. Microeng.
,
19
(
10
), p.
105029
.
You do not currently have access to this content.