The dynamic stability of a cantilevered beam actuated by a nonconservative follower force has previously been studied for its interesting dynamical properties and its applications to engineering designs such as thrusters. However, most of the literature considers a linear model. A modest number of papers consider a nonlinear model. Here, a system of nonlinear equations is derived from a new energy approach for an inextensible cantilevered beam with a follower force acting upon it. The equations are solved in time, and the agreement is shown with published results for the critical force including the effects of damping (as determined by a linear model). This model readily allows the determination of both in-plane and out-of-plane deflections as well as the constraint force. With this novel transparency into the system dynamics, the nonlinear postcritical limit cycle oscillations (LCO) are studied including a concentration on the force which enforces the inextensibility constraint.

References

References
1.
Beck
,
M.
,
1952
, “
Die Knicklast Des Einseitig Eingespannten, tangential Gedrückten Stabes
,”
Z. Angew. Math. Phys.
,
3
(
3
), pp.
225
228
.
2.
Bolotin
,
V.
,
1963
,
Nonconservative Problems of the Theory of Elastic Stability
,
Pergamon Press
,
Oxford, UK
.
3.
Bolotin
,
V.
, and
Zhinzher
,
N.
,
1969
, “
Effects of Damping on Stability of Elastic Systems Subjected to Nonconservative Forces
,”
Int. J. Solids Struct.
,
5
(
9
), pp.
965
989
.
4.
Chen
,
M.
,
1987
, “
Hopf Bifurcation in Beck's Problem
,”
Nonlinear Anal., Theory, Methods Appl.
,
11
(
9
), pp.
1061
1073
.
5.
Di Egidio
,
A.
,
Luongo
,
A.
, and
Paolone
,
A.
,
2007
, “
Linear and Non-Linear Interactions Between Static and Dynamic Bifurcations of Damped Planar Beams
,”
Int. J. Non-Linear Mech.
,
42
(
1
), pp.
88
98
.
6.
Luongo
,
A.
, and
Di Egidio
,
A.
,
2005
, “
Bifurcation Equations Through Multiple-Scales Analysis for a Continuous Model of a Planar Beam
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
171
190
.
7.
Luongo
,
A.
, and
Di Egidio
,
A.
,
2006
, “
Divergence, HOPF and Double-Zero Bifurcations of a Nonlinear Planar Beam
,”
Comput. Struct.
,
84
(
24–25
), pp.
1596
1605
.
8.
Luongo
,
A.
, and
D'Annibale
,
F.
,
2017
, “
Nonlinear Hysteretic Damping Effects on the Post-Critical Behaviour of the Visco-Elastic Beck's Beam
,”
Math. Mech. Solids
,
22
(
6
), pp.
1347
1365
.
9.
Stanciulescu
,
I.
,
Virgin
,
L.
, and
Laursen
,
T.
,
2007
, “
Slender Solar Sail Booms: Finite Element Analysis
,”
J. Spacecr. Rockets
,
44
(
3
), pp.
528
537
.
10.
Langthjem
,
M.
, and
Sugiyama
,
Y.
,
2000
, “
Dynamic Stability of Columns Subjected to Follwer Loads: A Survey
,”
J. Sound Vib.
,
238
(
5
), pp.
809
851
.
11.
Ziegler
,
H.
,
1952
, “
Die Stabilitätskriterien Der Elastomechanik
,”
Ing.-Arch.
,
20
(
1
), pp.
49
56
.
12.
Luongo
,
A.
, and
D'Annibale
,
F.
,
2014
, “
On the Destabilizing Effect of Damping on Discrete and Continuous Circulatory Systems
,”
J. Sound Vib.
,
333
(
24
), pp.
6723
6741
.
13.
Hagedorn
,
P.
,
1970
, “
On the Destabilizing Effect of Non-Linear Damping in Non-Conservative Systems With Follower Forces
,”
Int. J. Non-Linear Mech.
,
5
(
2
), pp.
341
358
.
14.
Thomson
,
J.
,
1995
, “
Chaotic Dynamics of the Partially Follower-Loaded Elastic Double Pendulum
,”
J. Sound Vib.
,
188
(
3
), pp.
385
405
.
15.
Crespo da Silva
,
M. R. M.
,
1978
, “
Harmonic Non-Linear Response of Beck's Column to a Lateral Excitation
,”
Int. J. Solids Struct.
,
14
(
12
), pp.
987
997
.
16.
Crespo da Silva
,
M.
,
1978
, “
Flexural-Flexural Oscillations of Beck's Column Subjected to a Planar Harmonic Excitation
,”
J. Sound Vib.
,
60
(
1
), pp.
133
144
.
17.
Luongo
,
A.
, and
D'Annibale
,
F.
,
2013
, “
Double Zero Bifurcation of Non-Linear Viscoelastic Beams Under Conservative and Non-Conservative Loads
,”
Int. J. Non-Linear Mech.
,
55
(
Suppl. C
), pp.
128
139
.
18.
D'Annibale
,
F.
,
Ferretti
,
M.
, and
Luongo
,
A.
,
2016
, “
Improving the Linear Stability of the Beck's Beam by Added Dashpots
,”
Int. J. Mech. Sci.
,
110
, pp.
151
159
.
19.
Crespo da Silva
,
M.
, and
Glynn
,
C.
,
1978
, “
Non-Linear Flexural-Flexural-Torsional Dynamics of Inextensional Beams—I: Equations of Motion
,”
J. Struct. Mech.
,
6
(
4
), pp.
437
448
.
20.
Crespo da Silva
,
M.
, and
Glynn
,
C.
,
1978
, “
Non-Linear Flexural-Flexural-Torsional Dynamics of Inextensional Beams—II: Forced Motions
,”
J. Struct. Mech.
,
6
(
4
), pp.
449
461
.
21.
Dowell
,
E.
, and
McHugh
,
K.
,
2016
, “
Equations of Motion for an Inextensible Beam Undergoing Large Deflections
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051007
.
22.
Hamdan
,
M.
, and
Dado
,
M.
,
1997
, “
Large Amplitude Free Vibrations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia
,”
J. Sound Vib.
,
206
(
2
), pp.
151
168
.
23.
Mahmoodi
,
S. N.
,
Jalili
,
N.
, and
Khadem
,
S. E.
,
2008
, “
An Experimental Investigation of Nonlinear Vibration and Frequency Response Analysis of Cantilever Viscoelastic Beams
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1409
1419
.
24.
McHugh
,
K.
, and
Dowell
,
E.
,
2018
, “
Nonlinear Responses of Inextensible Cantilever and Free-Free Beams Undergoing Large Deflections
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051008
.
25.
Raviv Sayag
,
M.
, and
Dowell
,
E.
,
2016
, “
Linear Versus Nonlinear Response of a Cantilevered Beam Under Harmonic Base Excitation: Theory and Experiment
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101002
.
26.
Tang
,
D.
,
Zhao
,
M.
, and
Dowell
,
E.
,
2014
, “
Inextensible Beam and Plate Theory: Computational Analysis and Comparison With Experiment
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061009
.
27.
Villanueva
,
L.
,
Karabalin
,
R. B.
,
Matheny
,
M. H.
,
Chi
,
D.
,
Sader
,
J.
, and
Roukes
,
M.
,
2013
, “
Nonlinearity in Nanomechanical Cantilevers
,”
Phys. Rev. B
,
87
(
2
), p.
024304
.
28.
Novozhilov
,
V.
,
1953
,
Foundations of the Nonlinear Theory of Elasticity
,
Graylock Press
, Rochester, NY.
29.
Tang
,
D.
,
Gibbs
,
S.
, and
Dowell
,
E.
,
2015
, “
Nonlinear Aeroelastic Analysis With Inextensible Plate Theory Including Correlation With Experiment
,”
AIAA J.
,
53
(
5
), pp.
1299
1308
.
30.
Kirillov
,
O. N.
, and
Seyranian
,
A. O.
,
2005
, “
The Effect of Small Internal and External Damping on the Stability of Distributed Non-conservative Systems
,”
J. Appl. Math. Mech.
,
69
(
4
), pp.
529
552
.
You do not currently have access to this content.