This manuscript investigates the effect of nonconservative electromechanical energy transfer on the onset of interwell motions in multistable piezoelectric energy harvesters. Multistable piezoelectric energy harvesters have been proven to outperform their linear counterparts when they undergo interwell oscillations. The conditions for interwell oscillations in such harvesters are generally characterized in terms of their potential energy function. This is accurate for a stand-alone mechanical oscillator but when the piezoelectric patches and a load resistance are included, a part of the kinetic energy supplied to the system is converted into electrical energy. In this manuscript, the Melnikov necessary conditions for interwell oscillations are derived, considering the effect of this nonconservative piezoelectric energy transfer. Through Melnikov theoretic analysis, it is shown that in a tristable harvester with all the three potential wells having the same depth, a higher excitation level is required to enable exits from the middle well to the outer wells when compared to the exits from the outer wells to the middle well. This is in stark contrast to a stand-alone tristable mechanical oscillator wherein interwell motions are simultaneously enabled for all the wells having the same depth.

References

References
1.
Kim
,
H.
,
Tadesse
,
Y.
, and
Priya
,
S.
,
2009
,
Energy Harvesting Technologies
(Piezoelectric Energy Harvesting),
Springer
,
Boston, MA
, pp.
3
39
.
2.
Inman
,
D. J.
, and
Erturk
,
A.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
,
Hoboken, NJ
.
3.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
,
Energy Harvesting Technologies
(Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters for Persistent Base Motions),
Springer
,
Boston, MA
, pp.
41
77
.
4.
Ali
,
S. F.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Piezoelectric Energy Harvesting With Parametric Uncertainty
,”
Smart Mater. Struct.
,
19
(
10
), p.
105010
.
5.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.
6.
Twiefel
,
J.
, and
Westermann
,
H.
,
2013
, “
Survey on Broadband Techniques for Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1291
1302
.
7.
Moon
,
F. C.
, and
Holmes
,
P. J.
,
1979
, “
A Magnetoelastic Strange Attractor
,”
J. Sound Vib.
,
65
(
2
), pp.
275
296
.
8.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2009
, “
Reversible Hysteresis for Broadband Magnetopiezoelastic Energy Harvesting
,”
Appl. Phys. Lett.
,
95
(
17
), p.
174103
.
9.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.
10.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.
11.
Fan
,
K.
,
Tan
,
Q.
,
Zhang
,
Y.
,
Liu
,
S.
,
Cai
,
M.
, and
Zhu
,
Y.
,
2018
, “
A Monostable Piezoelectric Energy Harvester for Broadband Low-Level Excitations
,”
Appl. Phys. Lett.
,
112
(
12
), p.
123901
.
12.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.
13.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D
,
239
(
10
), pp.
640
653
.
14.
Mann
,
B. P.
, and
Owens
,
B. A.
,
2010
, “
Investigations of a Nonlinear Energy Harvester With a Bistable Potential Well
,”
J. Sound Vib.
,
329
(
9
), pp.
1215
1226
.
15.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.
16.
Zhou
,
S.
,
Cao
,
J.
,
Inman
,
D. J.
,
Lin
,
J.
,
Liu
,
S.
, and
Wanga
,
Z.
,
2014
, “
Broadband Tristable Energy Harvester: Modeling and Experiment Verification
,”
Appl. Energy
,
133
, pp.
33
39
.
17.
Cao
,
J.
,
Zhou
,
S.
,
Wang
,
W.
, and
Lin
,
J.
,
2015
, “
Influence of Potential Well Depth on Nonlinear Tristable Energy Harvesting
,”
Appl. Phys. Lett.
,
106
(
17
), p.
173903
.
18.
Kim
,
P.
,
Son
,
D.
, and
Seok
,
J.
,
2016
, “
Triple-Well Potential With a Uniform Depth: Advantageous Aspects in Designing a Multi-Stable Energy Harvester
,”
Appl. Phys. Lett.
,
108
(
24
), p.
243902
.
19.
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214103
.
20.
Ali
,
S. F.
,
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Narayanan
,
S.
,
2011
, “
The Analysis of Piezomagnetoelastic Energy Harvesters Under Broadband Random Excitations
,”
J. Appl. Phys.
,
109
(
7
), p.
074904
.
21.
Zhou
,
Z.
,
Qin
,
W.
, and
Zhu
,
P.
,
2016
, “
Energy Harvesting in a Quad-Stable Harvester Subjected to Random Excitation
,”
AIP Adv.
,
6
(
2
), p.
025022
.
22.
Kumar
,
K. A.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2015
, “
Piezomagnetoelastic Broadband Energy Harvester: Nonlinear Modeling and Characterization
,”
Eur. Phys. J. Spec. Top.
,
224
(
14
), pp.
2803
2822
.
23.
Stanton
,
S. C.
,
Mann
,
B. P.
, and
Owens
,
B. A. M.
,
2012
, “
Melnikov Theoretic Methods for Characterizing the Dynamics of the Bistable Piezoelectric Inertial Generator in Complex Spectral Environments
,”
Phys. D
,
241
(
6
), pp.
711
720
.
24.
Li
,
G. X.
, and
Moon
,
F. C.
,
1990
, “
Criteria for Chaos of a Three-Well Potential Oscillator With Homoclinic and Heteroclinic Orbits
,”
J. Sound Vib.
,
136
(
1
), pp.
17
34
.
25.
Kumar
,
K. A.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2017
, “
Magneto-Elastic Oscillator: Modeling and Analysis With Nonlinear Magnetic Interaction
,”
J. Sound Vib.
,
393
, pp.
265
284
.
26.
Salam
,
F. M. A.
,
1987
, “
The Melnikov Technique for Highly Dissipative Systems
,”
SIAM J. Appl. Math.
,
47
(
2
), pp.
232
243
.
27.
Thompson
,
J. M. T.
,
1989
, “
Chaotic Phenomena Triggering the Escape From a Potential Well
,”
Proc. R. Soc. London A
,
421
(
1861
), pp.
195
225
.
28.
Simiu
,
E.
, and
Frey
,
M. R.
,
1996
, “
Melnikov Processes and Noise-Induced Exits From a Well
,”
J. Eng. Mech.
,
122
(
3
), pp.
263
270
.
29.
Melnikov
,
V. K.
,
1963
, “
On the Stability of a Center for Time-Periodic Perturbations
,”
Trans. Moscow Math. Soc.
,
12
, pp.
3
52
.http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mmo&paperid=137&option_lang=eng
30.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2007
,
Applied Nonlinear Dynamics
(Chaos),
Wiley-VCH Verlag
, Weinheim, Germany, pp.
277
421
.
31.
Wiggins
,
S.
,
1990
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer-Verlag
,
New York
.
32.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2000
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
,
New York
.
33.
Simiu
,
E.
,
2002
,
Chaotic Transitions in Deterministic and Stochastic Dynamical Systems: Applications of Melnikov Processes in Engineering, Physics, and Neuroscience
,
Princeton University Press
, Princeton, NJ.
34.
Zhou
,
S.
,
Cao
,
J.
,
Inman
,
D. J.
,
Lin
,
J.
, and
Li
,
D.
,
2016
, “
Harmonic Balance Analysis of Nonlinear Tristable Energy Harvesters for Performance Enhancement
,”
J. Sound Vib.
,
373
, pp.
223
235
.
You do not currently have access to this content.