This paper develops a framework for propagation of uncertainties, governed by different probability distribution functions in a stochastic dynamical system. More specifically, it deals with nonlinear dynamical systems, wherein both the initial state and parametric uncertainty have been taken into consideration and their effects studied in the model response. A sampling-based nonintrusive approach using pseudospectral stochastic collocation is employed to obtain the coefficients required for the generalized polynomial chaos (gPC) expansion in this framework. The samples are generated based on the distribution of the uncertainties, which are basically the cubature nodes to solve expectation integrals. A mixture of one-dimensional Gaussian quadrature techniques in a sparse grid framework is used to produce the required samples to obtain the integrals. The familiar problem of degeneracy with high-order gPC expansions is illustrated and insights into mitigation of such behavior are presented. To illustrate the efficacy of the proposed approach, numerical examples of dynamic systems with state and parametric uncertainties are considered which include the simple linear harmonic oscillator system and a two-degree-of-freedom nonlinear aeroelastic system.

References

References
1.
Fishman
,
G.
,
2013
,
Monte Carlo: Concepts, Algorithms, and Applications
,
Springer Science & Business Media
, New York.
2.
Niederreiter
,
H.
,
1992
,
Random Number Generation and quasi-Monte Carlo Methods
, Vol.
63
,
Society of Indian Automobile Manufacturers
, Philadelphia, PA.
3.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
4.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
, Princeton, NJ.
5.
Duan
,
J.
,
2015
,
An Introduction to Stochastic Dynamics
, Vol.
51
,
Cambridge University Press
, Cambridge, UK.
6.
Gao
,
T.
,
Duan
,
J.
, and
Li
,
X.
,
2016
, “
Fokker–Planck Equations for Stochastic Dynamical Systems With Symmetric Lévy Motions
,”
Appl. Math. Comput.
,
278
, pp.
1
20
.
7.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
8.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
9.
Prabhakar
,
A.
,
Fisher
,
J.
, and
Bhattacharya
,
R.
,
2010
, “
Polynomial Chaos-Based Analysis of Probabilistic Uncertainty in Hypersonic Flight Dynamics
,”
AIAA J. Guid., Control, Dyn.
,
33
(
1
), pp.
222
234
.
10.
Madankan
,
R.
,
Singla
,
P.
,
Singh
,
T.
, and
Scott
,
P. D.
,
2013
, “
Polynomial-Chaos-Based Bayesian Approach for State and Parameter Estimations
,”
J. Guid., Control, Dyn.
,
36
(
4
), pp.
1058
1074
.
11.
Hosder
,
S.
, and
Walters
,
R. W.
,
2010
, “
Non-Intrusive Polynomial Chaos Methods for Uncertainty Quantification in Fluid Dynamics
,”
AIAA
Paper No. AIAA 2010–129
.
12.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
, “
Stochastic Finite Element Method: Response Statistics
,”
Stochastic Finite Elements: A Spectral Approach
,
Springer
, New York, pp.
101
119
.
13.
Xiu
,
D.
, and
Hesthaven
,
J. S.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.
14.
Millman
,
D.
,
King
,
P.
,
Maple
,
R.
, and
Beran
,
P.
,
2004
, “
Predicting Uncertainty Propagation in a Highly Nonlinear System With a Stochastic Projection Method
,”
AIAA
Paper No: AIAA 2004-1613.
15.
Desai
,
A.
,
Witteveen
,
J. A.
, and
Sarkar
,
S.
,
2013
, “
Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051034
.
16.
Thanusha
,
M.
, and
Sarkar
,
S.
,
2016
, “
Uncertainty Quantification of Subcritical Nonlinear Aeroelastic System Using Integrated Interpolation Method and Polynomial Chaos Expansion
,”
Procedia Eng.
,
144
, pp.
982
989
.
17.
Madankan
,
R.
,
Singla
,
P.
, and
Singh
,
T.
,
2013
, “
Application of Conjugate Unscented Transform in Source Parameters Estimation
,”
American Control Conference (ACC),
pp.
2448
2453
.
18.
Adurthi
,
N.
,
Singla
,
P.
, and
Singh
,
T.
,
2018
, “
Conjugate Unscented Transformation: Applications to Estimation and Control
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
3
), p.
030907
.
19.
Congedo
,
P. M.
,
Abgrall
,
R.
, and
Geraci
,
G.
,
2011
, “
On the Use of the Sparse Grid Techniques Coupled With Polynomial Chaos
,” HAL INRIA, Bordeaux, France, Report No.
RR-7579
https://hal.inria.fr/inria-00579205.
20.
Heiss
,
F.
, and
Winschel
,
V.
,
2008
, “
Likelihood Approximation by Numerical Integration on Sparse Grids
,”
J. Econometrics
,
144
(
1
), pp.
62
80
.
21.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Dokl. Akad. Nauk SSSR
,
148
(
5
), pp. 1042–1045.
22.
Wasilkowski
,
G. W.
, and
Wozniakowski
,
H.
,
1995
, “
Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems
,”
J. Complexity
,
11
(
1
), pp.
1
56
.
23.
Jia
,
B.
,
Xin
,
M.
, and
Cheng
,
Y.
,
2011
, “
Sparse Gauss-Hermite Quadrature Filter With Application to Spacecraft Attitude Estimation
,”
J. Guid., Control, Dyn.
,
34
(
2
), pp.
367
379
.
24.
Fung
,
Y. C.
,
2008
,
An Introduction to the Theory of Aeroelasticity
,
Courier Dover Publications
, Mineola, NY.
25.
Lee
,
B.
,
Gong
,
L.
, and
Wong
,
Y.
,
1997
, “
Analysis and Computation of Nonlinear Dynamic Response of a Two-Degree-of-Freedom System and Its Application in Aeroelasticity
,”
J. Fluids Struct.
,
11
(
3
), pp.
225
246
.
26.
Lee
,
B.
,
Jiang
,
L.
, and
Wong
,
Y.
,
1999
, “
Flutter of an Airfoil With a Cubic Restoring Force
,”
J. Fluids Struct.
,
13
(
1
), pp.
75
101
.
27.
Jones
,
R. T.
,
1940
, “
The Unsteady Lift of a Wing of Finite Aspect Ratio
,” Neighborhood Assistance Corporation of America, Washington DC, Report No.
TR-681
https://ntrs.nasa.gov/search.jsp?R=19930091758.
28.
Petras
,
K.
,
2000
, “
On the Smolyak Cubature Error for Analytic Functions
,”
Adv. Comput. Math.
,
12
(
1
), pp.
71
93
.
29.
Burkardt
,
J.
,
2014
, “
Slow Exponential Growth for Gauss Patterson Sparse Grids
,” SIAM UQ Conference, Savannah, GA, accessed Aug. 20, 2018, https://people.sc.fsu.edu/~jburkardt/presentations/sgmga_gps.pdf
30.
Burkardt
,
J.
,
2014
, “
Slow Exponential Growth for Clenshaw Curtis Sparse Grids
,” SIAM UQ Conference, Savannah, GA, accessed Aug. 20, 2018, https://people.sc.fsu.edu/~jburkardt/presentations/sgmga_ccs.pdf
You do not currently have access to this content.