This paper presents a probabilistic framework for discrepancy prediction in dynamical system models under untested input time histories, based on information gained from validation experiments. Two surrogate modeling-based methods, namely observation surrogate and bias surrogate, are developed to predict the bias of a dynamical system simulation model under untested input time history. In the first method, a surrogate model is built for the observed experimental output, and the model bias for the untested input is obtained by comparing the output of the observation surrogate with the output of the physics-based model. The second method constructs a surrogate model for the bias in terms of the inputs in the conducted experiments. The bias surrogate model is then used to correct the simulation model prediction at each time-step under a predictor–corrector scheme to predict the model bias under untested conditions. A neural network-based surrogate modeling technique is employed to implement the proposed methodology. The bias prediction result is reported in a probabilistic manner, in order to account for the uncertainty of the surrogate model prediction. An air cycle machine case study is used to demonstrate the effectiveness of the proposed bias prediction framework.

References

References
1.
ASME
,
2006
,
Guide for Verification and Validation in Computations Solid Mechanics
,
New York, NY
2.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2002
, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci
,
38
(
3
), pp.
209
272
.
3.
Ling
,
Y.
, and
Mahadevan
,
S.
,
2013
, “
Quantitative Model Validation Techniques: New Insights
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
217
231
.
4.
Rebba
,
R.
,
Mahadevan
,
S.
, and
Huang
,
S.
,
2006
, “
Validation and Error Estimation of Computational Models
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1390
1397
.
5.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
6.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2008
, “
Computational Methods for Model Reliability Assessment
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1197
1207
.
7.
Ao
,
D.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Dynamics Model Validation Using Time-Domain Metrics
,”
J. Verif. Valid. Uncertain. Quantif.
,
2
(
1
), p.
011004
.
8.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2008
, “
Bayesian Wavelet Method for Multivariate Model Assessment of Dynamic Systems
,”
J. Sound Vib.
,
312
(
4–5
), pp.
694
712
.
9.
McFarland
,
J.
, and
Mahadevan
,
S.
,
2008
, “
Error and Variability Characterization in Structural Dynamics Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2621
2631
.
10.
Li
,
C.
, and
Mahadevan
,
S.
,
2014
, “
Uncertainty Quantification and Output Prediction in Multi-Level Problems
,”
AIAA
Paper No. AIAA 2014-0124.
11.
Red-Horse
,
J. R.
, and
Paez
,
T. L.
,
2008
, “
Sandia National Laboratories Validation Workshop: Structural Dynamics Application
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2578
2584
.
12.
Van Buren
,
K.
,
Reilly
,
J.
,
Neal
,
K.
,
Edwards
,
H.
, and
Hemez
,
F.
,
2017
, “
Guaranteeing Robustness of Structural Condition Monitoring to Environmental Variability
,”
J. Sound Vib.
,
386
, pp.
134
148
.
13.
Hemez
,
F.
, and
Doebling
,
S.
,
2000
, “
Validation of Structural Dynamics Models at Los Alamos National Laboratory
,”
AIAA
Paper No. AIAA-2000-1437.
14.
Doebling
,
S.
,
Schultze
,
J.
, and
Hemez
,
F.
,
2002
, “
Overview of Structural Dynamics Model Validation Activities at Los Alamos National Laboratory
,”
AIAA
Paper No. AIAA-2002–1643.
15.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2013
, “
Bayesian Methodology for Diagnosis Uncertainty Quantification and Health Monitoring
,”
Struct. Control Heal. Monit.
,
20
(
1
), pp.
88
106
.
16.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2011
, “
Wavelet Spectrum Analysis Approach to Model Validation of Dynamic Systems
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
575
590
.
17.
Sargent
,
R. G.
,
2013
, “
Verification and Validation of Simulation Models
,”
J. Simul.
,
7
(
1
), pp.
12
24
.
18.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071005
.
19.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.
20.
Doucet
,
A.
,
Freitas
,
N.
, and
Gordon
,
N.
,
2001
, “
An Introduction to Sequential Monte Carlo Methods
,”
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
, pp.
3
14
.
21.
Hombal
,
V.
, and
Mahadevan
,
S.
,
2011
, “
Bias Minimization in Gaussian Process Surrogate Modeling for Uncertainty Quantification
,”
Int. J. Uncertain. Quantif.
,
1
(
4
), pp.
321
349
.
22.
Winokur
,
J.
,
Conrad
,
P.
,
Sraj
,
I.
,
Knio
,
O.
,
Srinivasan
,
A.
,
Thacker
,
W. C.
,
Marzouk
,
Y.
, and
Iskandarani
,
M.
,
2013
, “
A Priori Testing of Sparse Adaptive Polynomial Chaos Expansions Using an Ocean General Circulation Model Database
,”
Comput. Geosci.
,
17
(
6
), pp.
899
911
.
23.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
24.
Abraham
,
A.
,
2005
, “
Artificial Neural Networks
,”
Handbook of Measuring System Design
,
Wiley
,
Chichester, UK
.
25.
Yang
,
H.
,
Griffiths
,
P. R.
, and
Tate
,
J. D.
,
2003
, “
Comparison of Partial Least Squares Regression and Multi-Layer Neural Networks for Quantification of Nonlinear Systems and Application to Gas Phase Fourier Transform Infrared Spectra
,”
Anal. Chim. Acta
,
489
(
2
), pp.
125
136
.
26.
Diaconescu
,
E.
, 2008, “
The Use of NARX Neural Networks to Predict Chaotic Time Series
,”
Wseas Transactions on computer research
, 3(3), pp. 182–191.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.8071&rep=rep1&type=pdf
27.
Orchard
,
M.
,
Kacprzynski
,
G.
,
Goebel
,
K.
,
Saha
,
B.
, and
Vachtsevanos
,
G.
,
2008
, “
Advances in Uncertainty Representation and Management for Particle Filtering Applied to Prognostics
,”
2008 International Conference on Prognostics and Health Management
, pp.
1
6
.
28.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
174
188
.
29.
Bodie
,
M.
,
Pamphile
,
T.
,
Zumberge
,
J.
,
Baudendistel
,
T.
, and
Boyd
,
M.
,
2016
, “
Air Cycle Machine for Transient Model Validation
,” SAE Technical Paper No. 2016-01-2000
30.
Moir
,
I. I.
,
Seabridge
,
A. G.
, and
Allan
,
G.
,
2008
,
Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration
,
Wiley
, Chichester, England.
31.
Neese
,
B.
,
1999
,
Aircraft Environmental Systems
,
Endeavor Books, Casper, WY
.
32.
Lee Rodgers
,
J.
, and
Nicewander
,
W. A.
,
1988
, “
Thirteen Ways to Look at the Correlation Coefficient
,”
Am. Stat.
,
42
(
1
), pp.
59
66
.
33.
Arlot
,
S.
, and
Celisse
,
A.
,
2010
, “
A Survey of Cross-Validation Procedures for Model Selection
,”
Stat. Surv.
,
4
, pp.
40
79
.
You do not currently have access to this content.