The mechanisms with uncertain parameters may exhibit multiple dynamic response patterns. As a single surrogate model can hardly describe all the dynamic response patterns of mechanism dynamics, a new computation methodology is proposed to study multiple dynamic response patterns of a flexible multibody system with uncertain random parameters. The flexible multibody system of concern is modeled by using a unified mesh of the absolute nodal coordinate formulation (ANCF). The polynomial chaos (PC) expansion with collocation methods is used to generate the surrogate model for the flexible multibody system with random parameters. Several subsurrogate models are used to describe multiple dynamic response patterns of the system dynamics. By the motivation of the data mining, the Dirichlet process mixture model (DPMM) is used to determine the dynamic response patterns and project the collocation points into different patterns. The uncertain differential algebraic equations (DAEs) for the flexible multibody system are directly transformed into the uncertain nonlinear algebraic equations by using the generalized-alpha algorithm. Then, the PC expansion is further used to transform the uncertain nonlinear algebraic equations into several sets of nonlinear algebraic equations with deterministic collocation points. Finally, two numerical examples are presented to validate the proposed methodology. The first confirms the effectiveness of the proposed methodology, and the second one shows the effectiveness of the proposed computation methodology in multiple dynamic response patterns study of a complicated spatial flexible multibody system with uncertain random parameters.

References

References
1.
Benosman
,
M.
, and
Vey
,
G. L.
,
2004
, “
Control of Flexible Manipulators: A Survey
,”
Robotica.
,
22
(
5
), pp.
533
545
.
2.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory.
,
41
(
7
), pp.
749
777
.
3.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.
4.
Isukapalli
,
S. S.
,
1999
, “
Uncertainty Analysis of Transport-Transformation Models
,” Ph.D. dissertation, The State University of New Jersey, New Brunswick, NJ.
5.
Fishman
,
G. S.
,
1996
, “
Monte Carlo: Concepts, Algorithms, and Applications
,”
Springer-Verlag
,
New York
.
6.
Jensen
,
H. A.
, and
Valdebenito
,
M. A.
,
2009
, “
Reliability-Based Optimization of Stochastic Systems Using Line Search
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49–52
), pp.
3915
3924
.
7.
Mysers
,
R. H.
, and
Montgomery
,
D. C.
,
2008
, “
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,”
J. Stat. Plan. Inference
,
59
(
3
), pp. 284–286.
8.
Ghanem
,
R.
, and
Spanos
,
P.
,
1990
, “
Polynomial Chaos in Stochastic Finite Element
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
197
202
.
9.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.
10.
Kewlani
,
G.
, and
Iagnemma
,
K.
,
2008
, “
A Stochastic Response Surface Approach to Statistical Prediction of Mobile Robot Mobility
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
2234
2239
.
11.
Wu
,
J. L.
,
Luo
,
Z.
,
Zhang
,
Y. Q.
,
Zhang
,
N.
, and
Chen
,
L.
,
2013
, “
Interval Uncertain Method for Multibody Mechanical Systems Using Chebyshev Inclusion Functions
,”
Int. J. Numer. Methods Eng.
,
95
(
7
), pp.
608
630
.
12.
Wang
,
Z.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2016
, “
Dynamics of Spatial Rigid–Flexible Multibody Systems With Uncertain Interval Parameters
,”
Nonlinear Dyn.
,
84
(
2
), pp.
527
548
.
13.
Schmitt
,
K. P.
,
Anitescu
,
M.
, and
Negrut
,
D.
,
2010
, “
Efficient Sampling for Spatial Uncertainty Quantification in Multibody System Dynamics Applications
,”
Int. J. Numer. Methods Eng.
,
80
(
5
), pp.
537
564
.
14.
Batou
,
A.
, and
Soize
,
C.
,
2012
, “
Rigid Multibody System Dynamics With Uncertain Rigid Bodies
,”
Multibody Syst. Dyn.
,
27
(
3
), pp.
285
319
.
15.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties—Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.
16.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties—Part II: Numerical Applications
,”
Multibody Syst. Dyn.
,
15
(
3
), pp.
241
262
.
17.
Wang
,
S. X.
,
Wang
,
Y. H.
, and
He
,
B. Y.
,
2008
, “
Dynamic Modeling of Flexible Multibody Systems With Parameter Uncertainty
,”
Chaos Solitons Fractals
,
36
(
3
), pp.
605
611
.
18.
Wu
,
J. L.
,
Luo
,
Z.
,
Zhang
,
N.
, and
Zhang
,
Y. Q.
,
2016
, “
Dynamic Computation of Flexible Multibody System With Uncertain Material Properties
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1231
1254
.
19.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics Review of past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
20.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.
21.
Eberhard
,
P.
, and
Schiehlen
,
W.
,
2006
, “
Computational Dynamics of Multibody Systems History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
3
12
.
22.
Sun
,
J. L.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2017
, “
Topology Optimization Based on Level Set for a Flexible Multibody System Modeled Via ANCF
,”
Struct. Multidiscip. Opt.
,
55
(
4
), pp.
1159
1177
.
23.
Tian
,
Q.
,
Lou
,
J.
, and
Mikkola
,
A.
,
2017
, “
A New Elastohydrodynamic Lubricated Spherical Joint Model for Rigid-Flexible Multibody Dynamics
,”
Mech. Mach. Theory.
,
107
, pp.
210
228
.
24.
Patel
,
M.
,
Orzechowski
,
G.
,
Tian
,
Q.
, and
Shabana
,
A. A.
,
2016
, “
A New Multibody System Approach for Tire Modeling Using ANCF Finite Elements
,”
Proc. Inst. Mech. Eng. K: J Multibody Dyn.
,
230
(1), pp.
69
842
.
25.
O'Brien
,
J.
,
F.
,
Jafari
,
F.
, and
Wen
,
J. T.
,
2006
, “
Determination of Unstable Singularities in Parallel Robots With N Arms
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
160
167
.
26.
Yang
,
Y.
, and
O'Brien
,
J. F.
,
2009
, “
A Geometric Approach for the Design of Singularity-Free Parallel Robots
,”
IEEE International Conference on Robotics Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
1801
1806
.
27.
Karimi
,
A.
,
Masouleh
,
M. T.
, and
Cardou
,
P.
,
2014
, “
Singularity-Free Workspace Analysis of General 6-U P S Parallel Mechanisms Via Convex Optimization
,”
Mech. Mach. Theory
,
80
, pp.
17
34
.
28.
Yang
,
Y.
, and
O'Brien
,
J. F.
,
2008
, “
Finding Unmanipulable Singularities in Parallel Mechanisms Using Jacobian Decomposition
,”
J. Intell. Rob. Syst.
,
53
(
1
), pp.
3
19
.
29.
Cha
,
S. H.
,
Lasky
,
T. A.
, and
Velinsky
,
S. A.
,
2009
, “
Determination of the Kinematically Redundant Active Prismatic Joint Variable Ranges of a Planar Parallel Mechanism for Singularity-Free Trajectories
,”
Mech. Mach. Theory
,
44
(
5
), pp.
1032
1044
.
30.
Behbahani
,
A. H.
,
Kim
,
D.
,
Stupar
,
P.
,
Denatale
,
J.
, and
M'Closkey
,
R. T.
,
2017
, “
Tailored Etch Profiles for Wafer-Level Frequency Tuning of Axisymmetric Resonators
,”
J. Mems.
,
26
(2), pp.
333
343
.
31.
Trusov
,
A. A.
,
Prikhodko
,
I. P.
,
Zotov
,
S. A.
, and
Shkel
,
A. M.
,
2011
, “
Low-Dissipation Silicon Tuning Fork Gyroscopes for Rate and Whole Angle Measurements
,”
IEEE Sens. J.
,
11
(
11
), pp.
2763
2770
.
32.
Behbahani
,
A. H.
, and
M'Closkey
,
R. T.
,
2017
, “
Frequency Analysis of a Uniform Ring Perturbed by Point Masses and Springs
,”
J. Sound Vib.
,
397
, pp.
204
221
.
33.
Ge
,
H. H.
,
Behbahani
,
A. H.
, and
M'Closkey
,
R. T.
,
2018
, “
MEMS Gyro Drift Compensation Using Multiple Rate Measurements Derived From a Single Resonator
,”
IEEE/ION Position, Location and Navigation Symposium
(
PLANS
), Monterey, CA, Apr. 23–26, pp.
288
293
.
34.
Jain
,
A. K.
,
Murty
,
M. N.
, and
Fylnn
,
P. K.
,
1999
, “
Data Clustering: A Review
,”
ACM Comput. Surv.
,
31
(
3
), pp.
264
323
.
35.
Neal
,
R. M.
,
2000
, “
Markov Chain Sampling Methods for Dirichlet Process Mixture Models
,”
J. Comput. Graph. Stat.
,
9
(
2
), pp.
249
265
.
36.
Nachbagauer
,
K.
,
2014
, “
State of the Art of ANCF Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and the Locking Phenomenon in Comparison with Proposed Beam Finite Elements
,”
Arch. Comput. Meth. Eng.
,
21
(
3
), pp.
293
319
.
37.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2000
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.
38.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2005
, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate formulation
,”
J. Sound Vib.
,
280
(
3
), pp.
719
738
.
39.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates
,”
Proc. Inst. Mech. Eng. K: J Multibody Dyn.
,
221
(
2
), pp.
219
231
.
40.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng. K: J Multibody Dyn.
,
219
(
4
), pp.
345
355
.
41.
Jalon
,
J.
, and
Bayo
,
E.
,
2012
,
Kinematic and Dynamic Simulation of Multibody Systems
,
Springer
,
Berlin
.
42.
Jalón
,
J. G. D.
,
2007
, “
Twenty-Five Years of Natural Coordinates
,”
Multibody Syst. Dyn.
,
18
(
1
), pp.
15
33
.
43.
García-Vallejo
,
D.
,
Escalona
,
J. L.
,
Mayo
,
J.
, and
Domínguez
,
J.
,
2003
, “
Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates
,”
Nonlinear Dyn.
,
34
(
1/2
), pp.
75
94
.
44.
Kallenberg
,
O.
,
2002
,
Foundations of Modern Probability
,
Springer-Verlag, New York
.
45.
Erdélyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F. G.
,
1955
,
Higher Transcendental Functions, II
,
McGraw-Hill
, Springer-Verlag, New York.
46.
Tian
,
Q.
,
Zhang
,
Y. Q.
,
Chen
,
L. P.
, and
Yang
,
J.
,
2009
, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021009
.
47.
Shabana
,
A. A.
, and
Hussein
,
B.
,
2009
, “
A Two-Loop Sparse Matrix Numerical Integration Procedure for the Solution of Differential/Algebraic Equations: Application to Multibody Systems
,”
J. Sound Vib.
,
327
(
3–5
), pp.
557
563
.
48.
Hussein
,
B.
, and
Shabana
,
A. A.
,
2011
, “
Sparse Matrix Implicit Numerical Integration of the Stiff Differential/Algebraic Equation: Implementation
,”
Nonlinear Dyn.
,
65
(
4
), pp.
369
382
.
49.
Chung
,
J.
, and
Hulbert
,
G.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
50.
Hussein
,
B.
,
Negrut
,
D.
, and
Shabana
,
A. A.
,
2008
, “
Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations
,”
Nonlinear Dyn.
,
54
(
4
), pp.
283
296
.
51.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
52.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Yang
,
J.
,
2010
, “
Simulation of Planar Flexible Multibody Systems With Clearance and Lubricated Revolute Joints
,”
Nonlinear Dyn.
,
60
(
4
), pp.
489
511
.
53.
Tian
,
Q.
,
Zhang
,
Y. Q.
,
Chen
,
L. P.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.
54.
Tian
,
Q.
,
Paulo
,
F.
, and
Lankarani
,
H.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
.
55.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2012
, “
Dynamics and Control of a Spatial Rigid-Flexible Multibody System With Multiple Cylindrical Clearance Joints
,”
Mech. Mach. Theory
,
52
, pp.
106
129
.
56.
Fedoryuk
,
M. V.
,
1994
, “
Hermite Functions
,”
Hazewinkel, Michiel, Encyclopedia of Mathematics
,
Springer Science
, New York.
57.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm as 136: A K-Means Clustering Algorithm
,”
J. R. Stat. Soc.
,
28
(
1
), pp.
100
108
.
58.
Moon
,
T. K.
,
1996
, “
The Expectation-Maximization Algorithm
,”
IEEE Sig. Proc. Mag.
,
13
(
6
), pp.
47
60
.
59.
Ester
,
M.
,
1996
, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
,”
Second International Conference on Knowledge Discovery in Data Mining
, Portland, OR, Aug. 2–4, pp.
226
231
.
60.
Jensen
,
F. V.
,
1996
, “
An Introduction to Bayesian Networks
,”
Practitioner's Knowledge Representation
,
Springer
,
Berlin
, pp.
1
5
.
61.
Antoniak
,
C. E.
,
1974
, “
Mixtures of Dirichlet Processes With Applications to Bayesian Nonparametric Problems
,”
Ann. Stat.
,
2
(
6
), pp.
1152
1174
.
62.
Blei
,
D. M.
,
Jordan
,
M. I.
, and
Griffiths
,
T. L.
,
2003
, “
Hierarchical Topic Models and the Nested Chinese Restaurant Process
,”
International Conference on Neural Information Processing Systems
, Whistler, BC, Canada, Dec. 9–11, pp.
17
24
.
63.
Blei
,
D. M.
,
Griffiths
,
T. L.
, and
Jordan
,
M. I.
,
2007
, “
The Nested Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies
,”
ACM
,
57
(
2
), pp.
17
24
.
64.
Haff
,
L. R.
,
1979
, “
An Identity for the Wishart Distribution With Applications
,”
J. Multi. Anal.
,
9
(
4
), pp.
531
544
.
65.
Travis
,
E.
, and
Oliphant
,
E.
,
2007
, “
Python for Scientific Computing
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
10
20
.
66.
Garreta
,
R.
, and
Moncecchi
,
G.
,
2013
, “
Learning Scikit-Learn: Machine Learning in Python
,” Packt Publishing, Birmingham, UK.
67.
Wang
,
Z.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2018
, “
Dynamics of Flexible Multibody Systems With Hybrid Uncertain Parameters
,”
Mech. Mach. Theory
,
121
, pp.
128
147
.
You do not currently have access to this content.