An innovative approach to topology optimization of dynamic system is introduced that is based on the system transfer-function H-norm. As for the structure, the proposed strategy allows to determine the optimal material distribution that ensures the minimization of a suitable goal function, such as (an original definition of) the dynamic compliance. Load uncertainty is accounted for by means of a nonprobabilistic convex-set approach (Ben-Haim and Elishakoff, 1990, Convex Models of Uncertainty in Applied Mechanics, Elsevier Science, Amsterdam). At each iteration, the worst load is determined as the one that maximizes the current dynamic compliance so that the proposed strategy fits the so-called worst case scenario (WCS) approach. The overall approach consists of the repeated solution of the two steps (minimization of the dynamic compliance with respect to structural parameters and maximization of the dynamic compliance with respect to the acting load) until convergence is achieved. Results from representative numerical studies are eventually presented along with extensions to the proposed approach that are currently under development.

References

References
1.
Cherkaev
,
E.
, and
Cherkaev
,
A.
,
2003
, “
Principal Compliance and Robust Optimal Design
,”
J. Elasticity
,
72
(
1–3
), pp.
71
98
.
2.
Cherkaev
,
E.
, and
Cherkaev
,
A.
,
2008
, “
Minimax Optimization Problem of Structural Design
,”
Comput. Struct.
,
86
(
13–14
), pp.
1426
1435
.
3.
Seyranian
,
A.
,
Lund
,
E.
, and
Olhoff
,
N.
,
1994
, “
Multiple Eigenvalues in Structural Optimization Problems
,”
Struct. Optim.
,
8
(
4
), pp.
207
227
.
4.
Guest
,
J. K.
, and
Igusa
,
T.
,
2008
, “
Structural Optimization Under Uncertain Loads and Nodal Locations
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
116
124
.
5.
Zhang
,
X.
,
Kang
,
Z.
, and
Zhang
,
W.
,
2016
, “
Robust Topology Optimization for Dynamic Compliance Minimization Under Uncertain Harmonic Excitations With Inhomogeneous Eigenvalue Analysis
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1469
1484
.
6.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
1990
,
Convex Models of Uncertainty in Applied Mechanics
,
Elsevier
,
Amsterdam, The Netherlands
.
7.
Zheng
,
J.
,
Luo
,
Z.
,
Jiang
,
C.
,
Ni
,
B.
, and
Wu
,
J.
,
2018
, “
Non-Probabilistic Reliability-Based Topology Optimization With Multidimensional Parallelepiped Convex Model
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2205
2221
.
8.
Wang
,
L.
,
Liu
,
D.
,
Yang
,
Y.
,
Wang
,
X.
, and
Qiu
,
Z.
,
2017
, “
A Novel Method of Non-Probabilistic Reliability-Based Topology Optimization Corresponding to Continuum Structures With Unknown but Bounded Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
573
595
.
9.
Liu
,
J. T.
, and
Gea
,
H. C.
,
2018
, “
Robust Topology Optimization Under Multiple Independent Unknown-But-Bounded Loads
,”
Comput. Methods Appl. Mech. Eng.
,
329
, pp.
464
479
.
10.
Brittain
,
K.
,
Silva
,
M.
, and
Tortorelli
,
D. A.
,
2012
, “
Minmax Topology Optimization
,”
Struct. Multidiscip. Optim.
,
45
(
5
), pp.
657
668
.
11.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Hagiwara
,
I.
,
1993
, “
Structural Topology and Shape Optimization for a Frequency Response Problem
,”
Comput. Mech.
,
13
(
3
), pp.
157
174
.
12.
Jog
,
C. S.
,
2002
, “
Topology Design of Structures Subjected to Periodic Loading
,”
J. Sound Vib.
,
253
(
3
), pp.
687
709
.
13.
Yoon
,
G. H.
,
2010
, “
Structural Topology Optimization for Frequency Response Problem Using Model Reduction Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
25–28
), pp.
1744
1763
.
14.
Allaire
,
G.
, and
Michailidis
,
G.
,
2018
, “
Modal Basis Approaches in Shape and Topology Optimization of Frequency Response Problems
,”
Int. J. Numer. Meth. Eng.
,
113
(
8
), pp.
1258
1299
.
15.
Olhoff
,
N.
, and
Du
,
J.
,
2018
, “
Generalized Incremental Frequency Method for Topological Design of Continuum Structures for Minimum Dynamic Compliance Subject to Forced Vibration at a Prescribed Low or High Value of the Excitation Frequency
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1113
1141
.
16.
Yang
,
Y.
,
Zhu
,
M.
,
Shields
,
M. D.
, and
Guest
,
J. K.
,
2017
, “
Topology Optimization of Continuum Structures Subjected to Filtered White Noise Stochastic Excitations
,”
Comput. Methods Appl. Mech. Eng.
,
324
(
1
), pp.
438
456
.
17.
Andreassen
,
E.
,
Ferrari
,
F.
,
Sigmund
,
O.
, and
Diaz
,
A. R.
,
2018
, “
Frequency Response as a Surrogate Eigenvalue Problem in Topology Optimization
,”
Int. J. Numer. Meth. Eng.
,
113
(
8
), pp.
1214
1229
.
18.
Ferrari
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2018
, “
Eigenvalue Topology Optimization Via Efficient Multilevel Solution of the Frequency Response
,”
Int. J. Numer. Meth. Eng.
,
115
(
7
), pp.
872
892
.
19.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
20.
Venini
,
P.
, and
Pingaro
,
M.
,
2017
, “
A New Approach to Optimization of Viscoelastic Beams: Minimization of the Input/Output Transfer Function H∞-Norm
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp.
1559
1573
.
21.
Venini
,
P.
, and
Pingaro
,
M.
,
2017
, “
An Innovative H∞-Norm Based Worst Case Scenario Approach for Dynamic Compliance Optimization With Applications to Viscoelastic Beams
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp.
1685
1710
.
22.
Venini
,
P.
, and
Ceresa
,
P.
,
2018
, “
A Rational H∞-Norm-Based Approach for the Optimal Design of Seismically Excited Reinforced Concrete Frames
,”
Earthquake Eng. Struct. Dyn.
,
47
(
6
), pp.
1522
1543
.
23.
Bendsoe
,
M.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
24.
Bendsoe
,
M.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
25.
MATLAB,
2018
,
Version 9.4.0 (R2018a)
,
The MathWorks
,
Natick, MA
.
26.
Castagnotto
,
A.
,
Varona
,
M. C.
,
Jeschek
,
L.
, and
Lohmann
,
B.
,
2017
, “
sss & sssMOR: Analysis and Reduction of Large-Scale Dynamic Systems in Matlab
,”
At Automatisierungstechnik
,
65
(
2
), pp.
134
150
.
27.
Zhao
,
J.
, and
Wang
,
C.
,
2014
, “
Robust Topology Optimization Under Loading Uncertainty Based on Linear Elastic Theory and Orthogonal Diagonalization of Symmetric Matrices
,”
Comput. Methods Appl. Mech. Eng.
,
273
(1), pp.
204
218
.
28.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in Matlab Using 88 Lines of Code
,”
Struct. Multidisc. Optim.
,
43
(
1
), pp.
1
16
.
29.
Bruggi
,
M.
, and
Venini
,
P.
,
2009
, “
Modeling Cohesive Crack Growth Via a Truly-Mixed Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
47–48
), pp.
3836
3851
.
You do not currently have access to this content.