Algorithms for the sensitivity analysis of multibody systems are quickly maturing as computational and software resources grow. Indeed, the area has made substantial progress since the first academic methods and examples were developed. Today, sensitivity analysis tools aimed at gradient-based design optimization are required to be as computationally efficient and scalable as possible. This paper presents extensive verification of one of the most popular sensitivity analysis techniques, namely the direct differentiation method (DDM). Usage of such method is recommended when the number of design parameters relative to the number of outputs is small and when the time integration algorithm is sensitive to accumulation errors. Verification is hereby accomplished through two radically different computational techniques, namely manual differentiation and automatic differentiation, which are used to compute the necessary partial derivatives. Experiments are conducted on an 18-degree-of-freedom, 366-dependent-coordinate bus model with realistic geometry and tire contact forces, which constitutes an unusually large system within general-purpose sensitivity analysis of multibody systems. The results are in good agreement; the manual technique provides shorter runtimes, whereas the automatic differentiation technique is easier to implement. The presented results highlight the potential of manual and automatic differentiation approaches within general-purpose simulation packages, and the importance of formulation benchmarking.

References

References
1.
González
,
M.
,
Dopico
,
D.
,
Lugrís
,
U.
, and
Cuadrado
,
J.
,
2006
, “
A Benchmarking System for MBS Simulation Software: Problem Standardization and Performance Measurement
,”
Multibody Syst. Dyn.
,
16
(
2
), pp.
179
190
.
2.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
,
2000
,
Sensitivity Analysis
,
Wiley
,
New York
.
3.
Haug
,
E. J.
, and
Arora
,
J. S.
,
1979
,
Applied Optimal Design: Mechanical and Structural Systems
,
Wiley
,
New York
.
4.
Haftka
,
R. T.
, and
Adelman
,
H. M.
,
1989
, “
Recent Developments in Structural Sensitivity Analysis
,”
Struct. Optim.
,
1
(
3
), pp.
137
151
.
5.
Barthelemy
,
B.
, and
Haftka
,
R. T.
,
1990
, “
Accuracy Analysis of the Semi-Analytical Method for Shape Sensitivity Calculation
,”
Mech. Struct. Mach.
,
18
(
3
), pp.
407
432
.
6.
Olhoff
,
N.
, and
Rasmussen
,
J.
,
1991
, “
Study of Inaccuracy in Semi-Analytical Sensitivity Analysis—A Model Problem
,”
Struct. Optim.
,
3
(
4
), pp.
203
213
.
7.
Newman
,
J. C.
,
Anderson
,
W. K.
, and
Whitfield
,
D. L.
,
1998
, “
Multidisciplinary Sensitivity Derivatives Using Complex Variables
,” Mississippi State University, Starkville, MS, Technical Report No. MSSU-EIRS-ERC-98-08.
8.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
Trans. Math. Software
,
29
(
3
), pp.
245
262
.
9.
Griewank
,
A.
,
1989
, “
On Automatic Differentiation
,”
Mathematical Programming: Recent Developments and Applications
,
M.
Iri
, and
K.
Tanabe
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
83
108
.
10.
Griewank
,
A.
, and
Walther
,
A.
,
2008
,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
11.
Bischof
,
C. H.
,
1996
, “
On the Automatic Differentiation of Computer Programs and an Application to Multibody Systems
,”
IUTAM Symposium on Optimization of Mechanical Systems
(Solid Mechanics and its Applications, Vol. 43),
D.
Bestle
, and
W.
Schiehlen
, eds., Springer, Dordrecht, The Netherlands, pp.
41
48
.
12.
Dürrbaum
,
A.
,
Klier
,
W.
, and
Hahn
,
H.
,
2002
, “
Comparison of Automatic and Symbolic Differentiation in Mathematical Modeling and Computer Simulation of Rigid-Body Systems
,”
Multibody Syst. Dyn.
,
7
(
4
), pp.
331
355
.
13.
Neto
,
M. A.
,
Ambrósio
,
J. A. C.
, and
Leal
,
R. P.
,
2009
, “
Sensitivity Analysis of Flexible Multibody Systems Using Composite Materials Components
,”
Int. J. Numer. Methods Eng.
,
77
(
3
), pp.
386
413
.
14.
Callejo
,
A.
, and
García de Jalón
,
J.
,
2014
, “
A Hybrid Direct-Automatic Differentiation Method for the Computation of Independent Sensitivities in Multibody Systems
,”
Int. J. Numer. Methods Eng.
,
100
(
12
), pp.
933
952
.
15.
Callejo
,
A.
,
Narayanan
,
S. H. K.
,
García de Jalón
,
J.
, and
Norris
,
B.
,
2014
, “
Performance of Automatic Differentiation Tools in the Dynamic Simulation of Multibody Systems
,”
Adv. Eng. Software
,
73
, pp.
35
44
.
16.
Krishnaswami
,
P.
,
Whage
,
R. A.
, and
Haug
,
E. J.
,
1983
, “
Design Sensitivity Analysis of Constrained Dynamic Systems by Direct Differentiation
,” SIAM, Iowa City, IA, Technical Report No. 83-5.
17.
Krishnaswami
,
P.
, and
Bhatti
,
M. A.
,
1984
, “
A General Approach for Design Sensitivity Analysis of Constrained Dynamic Systems
,”
ASME
Paper No. 84-DET-132
.
18.
Chang
,
C. O.
, and
Nikravesh
,
P. E.
,
1985
, “
Optimal Design of Mechanical Systems With Constraint Violation Stabilization Method
,”
ASME J. Mech. Transm. Autom. Des.
,
107
(
4
), pp.
493
498
.
19.
Haug
,
E. J.
,
1987
, “
Design Sensitivity Analysis of Dynamic Systems
,”
Computer Aided Optimal Design: Structural and Mechanical Systems
,
Springer
,
Berlin
, pp.
705
755
.
20.
Serban
,
R.
, and
Freeman
,
J. S.
,
1996
, “
Direct Differentiation Methods for the Design Sensitivity of Multibody Dynamic Systems
,”
ASME
Paper No.
96-DETC/DAC-1087.
21.
Dopico
,
D.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2015
, “
Direct and Adjoint Sensitivity Analysis of ODE Multibody Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011012
.
22.
Dopico
,
D.
,
González
,
F.
,
Luaces
,
A.
,
Saura
,
M.
, and
García-Vallejo
,
D.
,
2018
, “
Direct Sensitivity Analysis of Multibody Systems With Holonomic and Nonholonomic Constraints Via an Index-3 Augmented Lagrangian Formulation With Projections
,”
Nonlinear Dyn.
,
93
(4), pp. 2039–2056.
23.
Haug
,
E. J.
, and
Arora
,
J. S.
,
1978
, “
Design Sensitivity Analysis of Elastic Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
15
(
1
), pp.
35
62
.
24.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
J. Struct. Mech.
,
20
(
1
), pp.
67
92
.
25.
Bestle
,
D.
, and
Seybold
,
J.
,
1992
, “
Sensitivity Analysis of Constrained Multibody Systems
,”
Arch. Appl. Mech.
,
62
(3), pp.
181
190
.
26.
Cao
,
Y.
,
Li
,
S.
, and
Petzold
,
L.
,
2002
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: Algorithms and Software
,”
J. Comput. Appl. Math.
,
149
(
1
), pp.
171
191
.
27.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.
28.
Maly
,
T.
, and
Petzold
,
L. R.
,
1996
, “
Numerical Methods and Software for Sensitivity Analysis of Differential-Algebraic Systems
,”
J. Appl. Numer. Math.
,
20
(
1–2
), pp.
57
79
.
29.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer-Verlag
,
New York
.
30.
García de Jalón
,
J.
,
Callejo
,
A.
, and
Hidalgo
,
A. F.
,
2012
, “
Efficient Solution of Maggi's Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021003
.
31.
Griewank
,
A.
,
Juedes
,
D.
, and
Utke
,
J.
,
1996
, “
ADOL-C, A Package for the Automatic Differentiation of Algorithms Written in C/C++
,”
ACM Trans. Math. Software
,
22
(
2
), pp.
131
167
.
32.
Kowarz
,
A.
, and
Walther
,
A.
,
2006
, “
Optimal Checkpointing for Time-Stepping Procedures in ADOL-C
,”
Computational Science—ICCS 2006
,
V. N.
Alexandrov
,
G. D.
van Albada
,
P. M. A.
Sloot
, and
J.
Dongarra
, eds.,
Springer
,
Berlin
, pp.
541
549
.
33.
Callejo
,
A.
,
2013
, “
Dynamic Response Optimization of Vehicles Through Efficient Multibody Formulations and Automatic Differentiation Techniques
,”
Ph.D. thesis
, Universidad Politécnica de Madrid, Madrid, Spain.http://oa.upm.es/22555/2/ALFONSO_CALLEJO_GOENA_VERSION_REVISADA.pdf
34.
Callejo
,
A.
,
García de Jalón
,
J.
,
Luque
,
P.
, and
Mántaras
,
D. A.
,
2015
, “
Sensitivity-Based, Multi-Objective Design of Vehicle Suspension Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031008
.
35.
Callejo
,
A.
, and
García de Jalón
,
J.
,
2015
, “
Vehicle Suspension Identification Via Algorithmic Computation of State and Design Sensitivities
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021403
.
36.
Zhu
,
Y.
,
Dopico
,
D.
,
Sandu
,
C.
, and
Sandu
,
A.
,
2015
, “
Dynamic Response Optimization of Complex Multibody Systems in a Penalty Formulation Using Adjoint Sensitivity
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), pp.
1
9
.
37.
Dopico
,
D.
,
Luaces
,
A.
,
Lugrís
,
U.
,
Saura
,
M.
,
González
,
F.
,
Sanjurjo
,
E.
, and
Pastorino
,
R.
,
2009–2016
, “
MBSLIM: Multibody Systems en Laboratorio de Ingeniería Mecánica
,” (epub).
You do not currently have access to this content.