The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol' indices of the evolving mean and variance estimates of states are used to assess the impact of the time-invariant uncertain model parameters and the statistics of the stochastic input on the uncertainty of the output. Numerical results on two benchmark problems help illustrate that it is conceivable that parameters, which are not so significant in contributing to the uncertainty of the mean, can be extremely significant in contributing to the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to synthesize a surrogate probabilistic model of the stochastic system after using Lagrange interpolation polynomials (LIPs) as PC bases. The Sobol' indices are then directly evaluated from the PC coefficients. Although this concept is not new, a novel interpretation of stochastic collocation-based PC and intrusive PC is presented where they are shown to represent identical probabilistic models when the system under consideration is linear. This result now permits treating linear models as black boxes to develop intrusive PC surrogates.

References

References
1.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
J. Basic Eng.
,
82
(
1
), pp.
35
45
.
2.
Julier
,
S.
,
Uhlmann
,
J.
, and
Durrant-Whyte
,
H. F.
,
2000
, “
A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators
,”
IEEE Trans. Automatic Control
,
45
(
3
), pp.
477
482
.
3.
Adurthi
,
N.
,
Singla
,
P.
, and
Singh
,
T.
,
2018
, “
Conjugate Unscented Transformation: Applications to Estimation and Control
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(3), p. 030907.
4.
Evensen
,
G.
,
2003
, “
The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation
,”
Ocean Dyn.
,
53
(
4
), pp.
343
367
.
5.
Houtekamer
,
P. L.
, and
Mitchell
,
H. L.
,
1998
, “
Data Assimilation Using an Ensemble Kalman Filter Technique
,”
Mon. Weather Rev.
,
126
(
3
), pp.
796
811
.
6.
Saltelli, A.
,
Ratto, M.
,
Tarantola, S.
, and
Campolongo, F.
,
2006
, “
Sensitivity Analysis Practices: Strategies for Model-Based Inference
,”
Reliab. Eng. Syst. Saf.
,
91
(10–11), pp.
1109
1125
.
7.
Cho
,
K.-H.
,
Shin
,
S.-Y.
,
Kolch
,
W.
, and
Wolkenhauer
,
O.
,
2003
, “
Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNFα-Mediated NF-κ B Signal Transduction Pathway
,”
Simulation
,
79
(
12
), pp.
726
739
.
8.
Rodriguez-Fernandez
,
M.
,
Kucherenko
,
S.
,
Pantelides
,
C.
, and
Shah
,
N.
,
2007
, “
Optimal Experimental Design Based on Global Sensitivity Analysis
,”
Computer Aided Chemical Engineering
, Vol. 24,
Elsevier
, Amsterdam, The Netherlands, pp.
63
68
.
9.
Lamboni
,
M.
,
Monod
,
H.
, and
Makowski
,
D.
,
2011
, “
Multivariate Sensitivity Analysis to Measure Global Contribution of Input Factors in Dynamic Models
,”
Reliab. Eng. Syst. Saf.
,
96
(
4
), pp.
450
459
.
10.
Sandoval
,
E. H.
,
Anstett-Collin
,
F.
, and
Basset
,
M.
,
2012
, “
Sensitivity Study of Dynamic Systems Using Polynomial Chaos
,”
Reliab. Eng. Syst. Saf.
,
104
, pp.
15
26
.
11.
McCarthy
,
G. D.
,
Drewell
,
R. A.
, and
Dresch
,
J. M.
,
2015
, “
Global Sensitivity Analysis of a Dynamic Model for Gene Expression in Drosophila Embryos
,”
Peer J.
,
3
, p.
e1022
.
12.
McRae
,
G. J.
,
Tilden
,
J. W.
, and
Seinfeld
,
J. H.
,
1982
, “
Global Sensitivity Analysis—A Computational Implementation of the Fourier Amplitude Sensitivity Test (FAST)
,”
Comput. Chem. Eng.
,
6
(
1
), pp.
15
25
.
13.
Drignei
,
D.
, and
Mourelatos
,
Z. P.
,
2012
, “
Parameter Screening in Statistical Dynamic Computer Model Calibration Using Global Sensitivities
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081001
.
14.
Cao
,
J.
,
Du
,
F.
, and
Ding
,
S.
,
2013
, “
Global Sensitivity Analysis for Dynamic Systems With Stochastic Input Processes
,”
Reliab. Eng. Syst. Saf.
,
118
, pp.
106
117
.
15.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
16.
Crestaux
,
T.
,
Le Maître
,
O.
, and
Martinez
,
J.-M.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.
17.
Archer
,
G.
,
Saltelli
,
A.
, and
Sobol
,
I.
,
1997
, “
Sensitivity Measures, Anova-Like Techniques and the Use of Bootstrap
,”
J. Stat. Comput. Simul.
,
58
(
2
), pp.
99
120
.
18.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.
19.
Horn
,
R. A.
,
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1990
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
20.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
21.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
.
22.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
, “
Stochastic Finite Elements: A Spectral Approach
,”
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
23.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener—Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
24.
Konda
,
U.
,
Singla
,
P.
,
Singh
,
T.
, and
Scott
,
P. D.
,
2011
, “
State Uncertainty Propagation in the Presence of Parametric Uncertainty and Additive White Noise
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
5
), p.
051009
.
25.
Kim
,
K.-K. K.
,
Shen
,
D. E.
,
Nagy
,
Z. K.
, and
Braatz
,
R. D.
,
2013
, “
Wiener's Polynomial Chaos for the Analysis and Control of Nonlinear Dynamical Systems with Probabilistic Uncertainties
,”
IEEE Control Syst.
,
33
(5), pp.
58
67
.
26.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
, Princeton, NJ.
27.
Eldred
,
M.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,”
AIAA
Paper No. AIAA 2009-976
.
28.
Bryson
,
A. E.
, and
Mills
,
R. A.
,
1998
, “
Linear-Quadratic-Gaussian Controllers with Specified Parameter Robustness
,”
J. Guid., Control, Dyn.
,
21
(
1
), pp.
11
18
.
29.
Yue
,
C.
,
Butsuen
,
T.
, and
Hedrick
,
J.
,
1989
, “
Alternative Control Laws for Automotive Active Suspensions
,”
ASME J. Dyn. Syst., Meas., Control
,
111
(
2
), pp.
286
291
.
30.
Gobbi
,
M.
,
Levi
,
F.
, and
Mastinu
,
G.
,
2006
, “
Multi-Objective Stochastic Optimisation of the Suspension System of Road Vehicles
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1055
1072
.
31.
Narayanan
,
S.
, and
Senthil
,
S.
,
1998
, “
Stochastic Optimal Active Control of a 2-DOF Quarter Car Model With Non-Linear Passive Suspension Elements
,”
J. Sound Vib.
,
211
(
3
), pp.
495
506
.
You do not currently have access to this content.