The gradient-based design optimization of mechanical systems requires robust and efficient sensitivity analysis tools. The adjoint method is regarded as the most efficient semi-analytical method to evaluate sensitivity derivatives for problems involving numerous design parameters and relatively few objective functions. This paper presents a discrete version of the adjoint method based on the generalized-alpha time integration scheme, which is applied to the dynamic simulation of flexible multibody systems. Rather than using an ad hoc backward integration solver, the proposed approach leads to a straightforward algebraic procedure that provides design sensitivities evaluated to machine accuracy. The approach is based on an intrinsic representation of motion that does not require a global parameterization of rotation. Design parameters associated with rigid bodies, kinematic joints, and beam sectional properties are considered. Rigid and flexible mechanical systems are investigated to validate the proposed approach and demonstrate its accuracy, efficiency, and robustness.

References

References
1.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody System: A Finite Element Approach
,
Wiley
,
New York
.
3.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
,
New York
.
4.
Newman
,
J. C.
,
Anderson
,
W. K.
, and
Whitfield
,
D. L.
,
1998
, “
Multidisciplinary Sensitivity Derivatives Using Complex Variables
,” Mississippi State University, MS, Technical Report No. MSSU-EIRS-ERC-98-08.
5.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
Trans. Math. Software
,
29
(
3
), pp.
245
262
.
6.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
J. Struct. Mech.
,
20
(
1
), pp.
67
92
.
7.
Wang
,
L.
,
Diskin
,
B.
,
Biedron
,
R.
,
Nielsen
,
E. J.
, and
Bauchau
,
O. A.
,
2017
, “
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
,”
AIAA
Paper No. 2017-1670.
8.
Krishnaswami
,
P.
, and
Bhatti
,
M. A.
,
1984
, “
A General Approach for Design Sensitivity Analysis of Constrained Dynamic Systems
,”
ASME
Paper No. 84-DET-132.
9.
Chang
,
C. O.
, and
Nikravesh
,
P. E.
,
1985
, “
Optimal Design of Mechanical Systems With Constraint Violation Stabilization Method
,”
J. Mech. Transm. Autom. Des.
,
107
(
4
), pp.
493
498
.
10.
Haug
,
E. J.
, and
Arora
,
J. S.
,
1978
, “
Design Sensitivity Analysis of Elastic Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
15
(
1
), pp.
35
62
.
11.
Haug
,
E. J.
, and
Arora
,
J. S.
,
1979
,
Applied Optimal Design: Mechanical and Structural Systems
,
Wiley
,
New York
.
12.
Cao
,
Y.
,
Li
,
S.
, and
Petzold
,
L.
,
2002
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: Algorithms and Software
,”
J. Comput. Appl. Math.
,
149
(
1
), pp.
171
191
.
13.
Sonneville
,
V.
, and
Brüls
,
O.
,
2014
, “
Sensitivity Analysis for Multibody Systems Formulated on a Lie Group
,”
Multibody Syst. Dyn.
,
31
(
1
), pp.
47
67
.
14.
Dopico
,
D.
,
Zhu
,
Y. T.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2015
, “
Direct and Adjoint Sensitivity Analysis of Ordinary Differential Equation Multibody Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011012
.
15.
Nachbagauer
,
K.
,
Oberpeilsteiner
,
S.
,
Sherif
,
K.
, and
Steiner
,
W.
,
2015
, “
The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061011
.
16.
Boopathy
,
K.
, and
Kennedy
,
G.
,
2017
, “
Adjoint-Based Derivative Evaluation Methods for Flexible Multibody Systems With Rotorcraft Applications
,”
AIAA
Paper No. 2017-1671.
17.
Lauß
,
T.
,
Oberpeilsteiner
,
S.
,
Steiner
,
W.
, and
Nachbagauer
,
K.
,
2017
, “
The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031016
.
18.
Lauß
,
T.
,
Oberpeilsteiner
,
S.
,
Steiner
,
W.
, and
Nachbagauer
,
K.
,
2018
, “
The Discrete Adjoint Method for Parameter Identification in Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
42
(
4
), pp.
397
410
.
19.
Nielsen
,
E. J.
, and
Diskin
,
B.
,
2013
, “
Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids
,”
AIAA J.
,
51
(
6
), pp.
1355
1373
.
20.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Nikishkov
,
Y. G.
,
2001
, “
Modeling Rotorcraft Dynamics With Finite Element Multibody Procedures
,”
Math. Comput. Model.
,
33
(
10–11
), pp.
1113
1137
.
21.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE(3)
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
451
474
.
22.
Sonneville
,
V.
, and
Brüls
,
O.
,
2014
, “
A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p. 041002.
23.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
.
24.
Borri
,
M.
, and
Merlini
,
T.
,
1986
, “
A Large Displacement Formulation for Anisotropic Beam Analysis
,”
Meccanica
,
21
(
1
), pp.
30
37
.
25.
Hodges
,
D. H.
,
1990
, “
A Review of Composite Rotor Blade Modeling
,”
AIAA J.
,
28
(
3
), pp.
561
565
.
26.
Géradin
,
M.
, and
Rixen
,
D.
,
1995
, “
Parameterization of Finite Rotations in Computational Dynamics: A Review
,”
Rev. Eur. Des Élém. Finis
,
4
(
5–6
), pp.
497
553
.
27.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
,
2000
, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
,
4
(
2/3
), pp.
129
193
.
28.
Bauchau
,
O. A.
, and
Li
,
L. H.
,
2011
, “
Tensorial Parameterization of Rotation and Motion
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
0310071
.
29.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2016
, “
Manipulation of Motion Via Dual Entities
,”
Nonlinear Dyn.
,
85
(
1
), pp.
509
524
.
30.
Müller
,
A.
,
2016
, “
A Note on the Motion Representation and Configuration Update in Time Stepping Schemes for the Constrained Rigid Body
,”
BIT Numer. Math.
,
56
(
3
), pp.
995
1015
.
31.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2015
, “
Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
211
242
.
32.
Bottasso
,
C. L.
,
Bauchau
,
O. A.
, and
Cardona
,
A.
,
2007
, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index-Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput.
,
29
(
1
), pp.
397
414
.
33.
Bauchau
,
O. A.
,
Epple
,
A.
, and
Bottasso
,
C. L.
,
2009
, “
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
0210071
.
34.
Arnold
,
M.
,
Brüls
,
O.
, and
Cardona
,
A.
,
2015
, “
Error Analysis of Generalized-α Lie Group Time Integration Methods for Constrained Mechanical Systems
,”
Numer. Math.
,
129
(
1
), pp.
149
179
.
35.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.
36.
Callejo
,
A.
,
Bauchau
,
O.
,
Diskin
,
B.
, and
Wang
,
L.
,
2017
, “
Sensitivity Analysis of Beam Cross-Section Stiffness Using Adjoint Method
,”
ASME
Paper No. DETC2017-67846.
You do not currently have access to this content.