Abstract

Wave dynamics reflect a broad spectrum of natural phenomena and are often characterized by wave equation such as in the development of meta-devices used to steer wave propagation. Modeling synchronization of wave dynamics is critical in various applications such as in communications and neuroscience. In this paper, we study the synchronization problem for oscillations governed by wave equation with nonlinear (van der Pol type) boundary conditions through a single boundary coupling. The dynamics of the master system is self-excited and presents sensitive and rapid oscillations. With the only signal received at one end of the boundary, by constructing a mathematical model, we show the existence of a slave system that can be synchronized with the master system via the study of wave reflections on the boundary to recover the actual wave dynamics. The coupling gain, which represents the strength of the connection between the master system and the slave system, has been identified. The obtained result can be also viewed as an observer construction when the measurable output is only on the boundary. Numerical simulations are provided to demonstrate the effectiveness of the theoretical outcomes.

References

1.
Boccaletti
,
S.
,
Kurths
,
J.
,
Osipov
,
G.
,
Valladares
,
D.
, and
Zhou
,
C.
,
2002
, “
The Synchronization of Chaotic Systems
,”
Phys. Rep.
,
366
(
1–2
), pp.
1
101
.10.1016/S0370-1573(02)00137-0
2.
Bregni
,
S.
,
2002
,
Synchronization of Digital Telecommunications Networks
, Vol.
27
,
Wiley Online Library
,
New York
.
3.
Kanakov
,
O.
,
Osipov
,
G.
,
Chan
,
C.-K.
, and
Kurths
,
J.
,
2007
, “
Cluster Synchronization and Spatio-Temporal Dynamics in Networks of Oscillatory and Excitable Luo-Rudy Cells
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
17
(
1
), p.
015111
.10.1063/1.2437581
4.
Kryukov
,
A. K.
,
Osipov
,
G. V.
,
Polovinkin
,
A. V.
, and
Kurths
,
J.
,
2009
, “
Synchronous Regimes in Ensembles of Coupled Bonhoeffer–Van Der Pol Oscillators
,”
Phys. Rev. E
,
79
(
4
), p.
046209
.10.1103/PhysRevE.79.046209
5.
Boccaletti
,
S.
,
2008
,
The Synchronized Dynamics of Complex Systems
(Monograph Series Nonlinear Science Complexity), Vol.
6
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1
239
.
6.
Block
,
L. S.
, and
Coppel
,
W. A.
,
2006
,
Dynamics in One Dimension
,
Springer
,
Springer, Berlin
.
7.
Chang
,
S.-Y.
,
2018
, “
Weak Instability of Chen–Ricles Explicit Method for Structural Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), p.
054501
.10.1115/1.4039379
8.
Amengual
,
A.
,
Hernández-García
,
E.
,
Montagne
,
R.
, and
San Miguel
,
M.
,
1997
, “
Synchronization of Spatiotemporal Chaos: The Regime of Coupled Spatiotemporal Intermittency
,”
Phys. Rev. Lett.
,
78
(
23
), p.
4379
.10.1103/PhysRevLett.78.4379
9.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), p.
821
.10.1103/PhysRevLett.64.821
10.
Pecora
,
L. M.
,
Carroll
,
T. L.
,
Johnson
,
G. A.
,
Mar
,
D. J.
, and
Heagy
,
J. F.
,
1997
, “
Fundamentals of Synchronization in Chaotic Systems, Concepts, and Applications
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
7
(
4
), pp.
520
543
.10.1063/1.166278
11.
Liu
,
J.
,
Huang
,
Y.
,
Sun
,
H.
, and
Xiao
,
M.
,
2016
, “
Numerical Methods for Weak Solution of Wave Equation With Van Der Pol Type Nonlinear Boundary Conditions
,”
Numer. Methods Partial Differ. Equations
,
32
(
2
), pp.
373
398
.10.1002/num.21997
12.
Chen
,
G.
,
Hsu
,
S.-B.
, and
Zhou
,
J.
,
1998
, “
Chaotic Vibrations of the One-Dimensional Wave Equation Due to a Self-Excitation Boundary Condition—II: Energy Injection, Period Doubling and Homoclinic Orbits
,”
Int. J. Bifurcation Chaos
,
8
(
3
), pp.
423
445
.10.1142/S0218127498000280
13.
Chen
,
G.
,
Hsu
,
S.-B.
,
Zhou
,
J.
,
Chen
,
G.
, and
Crosta
,
G.
,
1998
, “
Chaotic Vibrations of the One-Dimensional Wave Equation Due to a Self-Excitation Boundary Condition—Part I: Controlled Hysteresis
,”
Trans. Am. Math. Soc.
,
350
(
11
), pp.
4265
4311
.10.1090/S0002-9947-98-02022-4
14.
Huang
,
Y.
,
2003
, “
Growth Rates of Total Variations of Snapshots of the 1D Linear Wave Equation With Composite Nonlinear Boundary Reflection Relations
,”
Int. J. Bifurcation Chaos
,
13
(
5
), pp.
1183
1195
.10.1142/S0218127403007138
15.
Huang
,
Y.
,
Luo
,
J.
, and
Zhou
,
Z.
,
2005
, “
Rapid Fluctuations of Snapshots of One-Dimensional Linear Wave Equation With a Van Der Pol Nonlinear Boundary Condition
,”
Int. J. Bifurcation Chaos
,
15
(
2
), pp.
567
580
.10.1142/S0218127405012223
16.
Kolesov
,
A. Y.
, and
Rozov
,
N. K.
,
2001
, “
The Buffer Phenomenon in a Mathematical Model of the Van Der Pol Self-Oscillator With Distributed Parameters
,”
Izvestiya: Math.
,
65
(
3
), p.
485
.10.1070/IM2001v065n03ABEH000336
17.
Li
,
L.
, and
Huang
,
Y.
,
2010
, “
Growth Rates of Total Variations of Snapshots of 1D Linear Wave Equations With Nonlinear Right-End Boundary Conditions
,”
J. Math. Anal. Appl.
,
361
(
1
), pp.
69
85
.10.1016/j.jmaa.2009.09.011
18.
Cai
,
S.
, and
Xiao
,
M.
,
2018
, “
Boundary Observability of Wave Equations With Nonlinear Van Der Pol Type Boundary Conditions
,”
Automatica
,
98
, pp.
350
353
.10.1016/j.automatica.2018.09.008
19.
Li
,
L.
,
Huang
,
Y.
, and
Xiao
,
M.
,
2012
, “
Observer Design for Wave Equations With Van Der Pol Type Boundary Conditions
,”
SIAM J. Control Optim.
,
50
(
3
), pp.
1200
1219
.10.1137/11083037X
20.
Guo
,
W.
, and
Guo
,
B.-Z.
,
2013
, “
Adaptive Output Feedback Stabilization for One-Dimensional Wave Equation With Corrupted Observation by Harmonic Disturbance
,”
SIAM J. Control Optim.
,
51
(
2
), pp.
1679
1706
.10.1137/120873212
21.
Krstic
,
M.
,
Guo
,
B.-Z.
,
Balogh
,
A.
, and
Smyshlyaev
,
A.
,
2008
, “
Output-Feedback Stabilization of an Unstable Wave Equation
,”
Automatica
,
44
(
1
), pp.
63
74
.10.1016/j.automatica.2007.05.012
22.
Tang
,
J.
,
Liu
,
J.
, and
Xiao
,
M.
,
2019
, “
Reconstruction of Initial Wave With Radiation Boundary Condition Via Boundary Sensing
,”
Wave Motion
,
91
, p.
102383
.10.1016/j.wavemoti.2019.102383
23.
Etter
,
P. C.
,
2003
,
Underwater Acoustic Modelling and Simulation
, 3rd ed.,
Taylor & Francis Group
,
London
.
24.
Smirnov
,
I.
,
Virovlyansky
,
A.
, and
Zaslavsky
,
G.
,
2001
, “
Theory and Applications of Ray Chaos to Underwater Acoustics
,”
Phys. Rev. E
,
64
(
3
), p.
036221
.10.1103/PhysRevE.64.036221
25.
Xinhua
,
Z.
,
1998
, “
Chaotic Characteristics Analyses of Underwater Acoustic Signals
,”
Fourth International Conference on Signal Processing
(
ICSP
), Beijing, China, Oct. 12–16, pp.
1451
1454
.10.1109/ICOSP.1998.770894
26.
Seybold
,
J. S.
,
2005
,
Introduction to RF Propagation
,
Wiley
,
Hoboken, NJ
.
27.
Chen
,
G.
,
Hsu
,
S.-B.
,
Huang
,
Y.
, and
Roque-Sol
,
M. A.
,
2011
, “
The Spectrum of Chaotic Time Series (i): Fourier Analysis
,”
Int. J. Bifurcation Chaos
,
21
(
5
), pp.
1439
1456
.10.1142/S0218127411029136
28.
Chen
,
G.
,
Hsu
,
S.-B.
,
Huang
,
Y.
, and
Roque-Sol
,
M. A.
,
2011
, “
The Spectrum of Chaotic Time Series (ii): Wavelet Analysis
,”
Int. J. Bifurcation Chaos
,
21
, pp.
1457
1467
.10.1142/S0218127411029148
29.
Wang
,
J.-M.
,
Guo
,
B.-Z.
, and
Krstic
,
M.
,
2011
, “
Wave Equation Stabilization by Delays Equal to Even Multiples of the Wave Propagation Time
,”
SIAM J. Control Optim.
,
49
(
2
), pp.
517
554
.10.1137/100796261
30.
Hale
,
J.
,
1977
,
Theory of Functional Differential Equations
(Applied Mathematical Sciences), Vol.
3
,
Springer
,
New York
.
You do not currently have access to this content.