Abstract

Lie group methods are an excellent choice for simulating differential equations evolving on Lie groups or homogeneous manifolds, as they can preserve the underlying geometric structures of the corresponding manifolds. Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can converge geometrically. In this paper, we focus on developing numerical methods for the simulation of geometric dynamics and control of rigid body systems. Practical algorithms, which combine the advantages of Lie group methods and spectral methods, are given and they are tested both in a geometric dynamic system and a geometric control system.

References

References
1.
Terze
,
Z.
,
Zlatar
,
D.
,
Vrdoljak
,
M.
, and
Pandža
,
V.
,
2016
, “
Lie Group Forward Dynamics of Fixed-Wing Aircraft With Singularity-Free Attitude Reconstruction on SO(3)
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021009
.10.1115/1.4034398
2.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N.
,
2011
, “
Computational Dynamics of a 3D Elastic String Pendulum Attached to a Rigid Body and an Inertially Fixed Reel Mechanism
,”
Nonlinear Dyn.
,
64
(
1–2
), pp.
97
115
.10.1007/s11071-010-9849-5
3.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2007
, “
Lie Group Variational Integrators for the Full Body Problem in Orbital Mechanics
,”
Celestial Mech. Dyn. Astron.
,
98
(
2
), pp.
121
144
.10.1007/s10569-007-9073-x
4.
Kobilarov
,
M. B.
, and
Marsden
,
J. E.
,
2011
, “
Discrete Geometric Optimal Control on Lie Groups
,”
IEEE Trans. Rob.
,
27
(
4
), pp.
641
655
.10.1109/TRO.2011.2139130
5.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
A Topological Obstruction to Continuous Global Stabilization of Rotational Motion and the Unwinding Phenomenon
,”
Syst. Control Lett.
,
39
(
1
), pp.
63
70
.10.1016/S0167-6911(99)00090-0
6.
Müller
,
A.
,
2016
, “
Coordinate Mappings for Rigid Body Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021010
.10.1115/1.4034730
7.
Jouan
,
P.
,
2011
, “
Controllability of Linear Systems on Lie Groups
,”
J. Dyn. Control Syst.
,
17
(
4
), pp.
591
616
.10.1007/s10883-011-9131-2
8.
Sachkov
,
Y. L.
,
1997
, “
Controllability of Right-Invariant Systems on Solvable Lie Groups
,”
J. Dyn. Control Syst.
,
3
(
4
), pp.
531
564
.10.1007/BF02463282
9.
Biggs
,
R. R.
, and
Claudiu
,
C.
,
2014
, “
Control Systems on Three-Dimensional Lie Groups: Equivalence and Controllability
,”
J. Dyn. Control Syst.
,
20
(
3
), pp.
307
339
.10.1007/s10883-014-9212-0
10.
Marsden
,
J.
, and
Ratiu
,
T.
,
1999
,
Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
,
Springer
,
New York
.
11.
Murray
,
R. M.
,
Sastry
,
S. S.
, and
Li
,
Z.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
1st ed.
,
CRC Press
,
Boca Raton, FL
.
12.
Brockett
,
R. W.
,
Stokes
,
A.
, and
Park
,
C. F.
,
1993
, “
A Geometrical Formulation of the Dynamical Equations Describing Kinematic Chains
,”
IEEE Conference on Robotics and Automation
(
ICRA
), Atlanta, GA, May 2–6, pp.
637
641
.10.1109/ROBOT.1993.291887
13.
Sonneville
,
V.
, and
Brls
,
O.
,
2014
, “
A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041002
.10.1115/1.4026569
14.
Brockett
,
R. W.
,
2014
, “
The Early Days of Geometric Nonlinear Control
,”
Automatica
,
50
(
9
), pp.
2203
2224
.10.1016/j.automatica.2014.06.010
15.
Jurdjevic
,
V.
, and
Sussmann
,
H. J.
,
1972
, “
Control Systems on Lie Groups
,”
J. Differ. Equations
,
12
(
2
), pp.
313
329
.10.1016/0022-0396(72)90035-6
16.
Crouch
,
P. E.
,
1981
, “
Geometric Structures in Systems Theory
,”
IEE Proc.-D: Control Theory Appl.
,
128
(
5
), pp.
242
252
.10.1049/ip-d.1981.0051
17.
Agrachev
,
A. A.
, and
Sachkov
,
Y. L.
,
2004
,
Control Theory From the Geometric Viewpoint
,
1st ed.
,
Springer
,
Berlin
.
18.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics
,
Springer
,
New York
.
19.
Isidori
,
A.
,
1999
,
Nonlinear Control Systems II
,
Springer
,
London
.
20.
Lewis
,
A.
, and
Bullo
,
F.
,
2005
, “
Geometric Control of Mechanical Systems
,” Springer, New York.
21.
Bullo
,
F.
, and
Murray
,
R. M.
,
1995
, “
Proportional Derivative (PD) Control on the Euclidean Group
,”
European Control Conference
, Rome, Italy, pp.
1091
1097
.https://pdfs.semanticscholar.org/6e72/4e5c7b231f68a428549e63343ee8b6526e56.pdf
22.
Jones
,
B. A.
, and
Anderson
,
R. L.
,
2012
, “
A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation
,” AAS/AIAA Spaceflight Mechanics Meeting, Charleston, SC, Paper No.
AAS 12-214
.https://pdfs.semanticscholar.org/719a/c2926acbc3344df1bc301f62853942540136.pdf
23.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.10.1017/S096249290100006X
24.
Schultz
,
J.
,
Flaβkamp
,
K.
, and
Murphey
,
T.
,
2016
, “
Variational Integrators for Structure-Preserving Filtering
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021005
.10.1115/1.4034728
25.
Iserles
,
A.
,
Munthe-Kaas
,
H. Z.
,
Nørsett
,
S. P.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numer.
,
9
(
2
), pp.
215
365
.10.1017/S0962492900002154
26.
Celledoni
,
E.
, and
Owren
,
B.
,
2003
, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
34
), pp.
421
438
.10.1016/S0045-7825(02)00520-0
27.
Lee
,
T.
,
McClamroch
,
N. H.
, and
Leok
,
M.
,
2005
, “
A Lie Group Variational Integrator for the Attitude Dynamics of a Rigid Body With Applications to the 3D Pendulum
,”
Proceedings of IEEE Conference on Control Applications
, Toronto, ON, Canada, Aug. 28–31, pp.
962
967
.10.1109/CCA.2005.1507254
28.
Izadi
,
M.
, and
Sanyal
,
A. K.
,
2016
, “
Rigid Body Pose Estimation Based on the Lagrange–D'Alembert Principle
,”
Automatica
, 71, pp.
78
88
.10.1016/j.automatica.2016.04.028
29.
Crouch
,
P. E.
, and
Grossman
,
R.
,
1993
, “
Numerical Integration of Ordinary Differential Equations on Manifolds
,”
J. Nonlinear Sci.
,
3
(
1
), pp.
1
33
.10.1007/BF02429858
30.
Hall
,
J.
, and
Leok
,
M.
,
2015
, “
Spectral Variational Integrators
,”
Numer. Math.
,
130
(
4
), pp.
681
740
.10.1007/s00211-014-0679-0
31.
Li
,
Y.
,
Wu
,
B.
, and
Leok
,
M.
,
2017
, “
Spectral Variational Integrators for Semi-Discrete Hamiltonian Wave Equations
,”
J. Comput. Appl. Math.
,
325
, pp.
56
73
.10.1016/j.cam.2017.04.043
32.
Li
,
Y.
,
Wu
,
B.
, and
Leok
,
M.
,
2017
, “
Spectral-Collocation Variational Integrators
,”
J. Comput. Phys.
,
332
, pp.
83
98
.10.1016/j.jcp.2016.12.007
33.
Hall
,
J.
, and
Leok
,
M.
,
2014
, “
Lie Group Spectral Variational Integrators
,”
Foundations of Computational Mathematics
, Springer, Berlin, pp.
1
59
.10.1007/s10208-015-9287-3
34.
Engø
,
K.
,
2000
, “
On the Construction of Geometric Integrators in the RKMK Class
,”
BIT Numer. Math.
,
40
(
1
), pp.
41
61
.10.1023/A:1022362117414
35.
Bou-Rabee
,
N.
, and
Marsden
,
J. E.
,
2009
, “
Hamilton-Pontryagin Integrators on Lie Groups—Part I: Introduction and Structure-Preserving Properties
,”
Found. Comput. Math.
,
9
(
2
), pp.
197
219
.10.1007/s10208-008-9030-4
36.
Varadarajan
,
V. S.
,
1974
,
Lie Groups, Lie Algebras, and Their Representations
,
Prentice Hall
,
New York
.
37.
Trefethen
,
L. N.
,
2000
,
Spectral Methods in MATLAB
(Software, Environments, and Tools), Vol.
10
,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
38.
Chaturvedi
,
N. A.
,
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2011
, “
Nonlinear Dynamics of the 3D Pendulum
,”
J. Nonlinear Sci.
,
21
(
1
), pp.
3
32
.10.1007/s00332-010-9078-6
39.
Li
,
Y.
,
Wu
,
B.
, and
Leok
,
M.
,
2018
, “
Construction and Comparison of Multidimensional Spectral Variational Integrators and Spectral Collocation Methods
,”
Appl. Numer. Math.
,
132
, pp.
35
50
.10.1016/j.apnum.2018.05.010
40.
Bullo
,
F.
,
Murray
,
R. M.
, and
Sarti
,
A.
,
2010
,
Control on the Sphere and Reduced Attitude Stabilization
,
California Institute of Technology
,
Pasadena, CA
.
You do not currently have access to this content.