Abstract

In this paper, we study the dynamics of one-dimensional chains composed of elastoplastic beads. Three uniform chains, which were experimentally studied in the existing literature, are taken as benchmark examples for manifesting wave propagation induced by multiple impacts between particles and by multiple-compression process in a single contact point. We perform simulations using an elastoplastic contact model developed recently for the binary contact of a sphere. Numerical results show good agreement with the experimental observations, including the profile and amplitude of the incident and reflected solitary waves, the travel time of the wave propagation, and the high-frequency oscillations residing in the high-amplitude stress wave. Our simulations also show that the multiple-compression process of the contact between particles is responsible for the oscillations residing in the pulse profile.

References

References
1.
Hong
,
J.
,
2005
, “
Universal Power-Law Decay of the Impulse Energy in Granular Protectors
,”
Phys. Rev. Lett.
,
94
(
10
), p.
108001
.10.1103/PhysRevLett.94.108001
2.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2006
, “
Energy Trapping and Shock Disintegration in a Composite Granular Medium
,”
Phys. Rev. Lett.
,
96
(
5
), p.
058002
.10.1103/PhysRevLett.96.058002
3.
Palermo
,
A.
,
Krödel
,
S.
,
Marzani
,
A.
, and
Daraio
,
C.
,
2016
, “
Engineered Metabarrier as Shield From Seismic Surface Waves
,”
Sci. Rep.
,
6
(
1
), p.
39356
.10.1038/srep39356
4.
Ma
,
W.
,
Liu
,
C.
,
Chen
,
B.
, and
Huang
,
L.
,
2006
, “
Theoretical Model for the Pulse Dynamics in a Long Granular Chain
,”
Phys. Rev. E
,
74
(
4
), p.
046602
.10.1103/PhysRevE.74.046602
5.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic–Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
.10.1115/1.4038187
6.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press, Cambridge, UK
.
7.
Stronge
,
W. J.
,
2004
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
8.
Li
,
L.
,
Wu
,
C.
, and
Thornton
,
C.
,
2001
, “
A Theoretical Model for the Contact of Elastoplastic Bodies
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
4
), pp.
421
431
.10.1243/0954406021525214
9.
Jackson
,
R. L.
, and
Kogut
,
L.
,
2006
, “
A Comparison of Flattening and Indentation Approaches for Contact Mechanics Modeling of Single Asperity Contacts
,”
ASME J. Tribol.
,
128
(
1
), pp.
209
212
.10.1115/1.2114948
10.
Bartier
,
O.
,
Hernot
,
X.
, and
Mauvoisin
,
G.
,
2010
, “
Theoretical and Experimental Analysis of Contact Radius for Spherical Indentation
,”
Mech. Mater.
,
42
(
6
), pp.
640
656
.10.1016/j.mechmat.2010.03.003
11.
Wang
,
E.
,
Geubelle
,
P.
, and
Lambros
,
J.
,
2013
, “
An Experimental Study of the Dynamic Elasto-Plastic Contact Behavior of Metallic Granules
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021009
.10.1115/1.4007254
12.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
,
1999
, “
Spherical Indentation of Elastic–Plastic Solids
,”
Proc. R. Soc. London A
,
455
(
1987
), pp.
2707
2728
.10.1098/rspa.1999.0423
13.
Yan
,
S.
, and
Li
,
L.
,
2003
, “
Finite Element Analysis of Cyclic Indentation of an Elastic-Perfectly Plastic Half-Space by a Rigid Sphere
,”
Proc. Inst. Mech. Eng., Part C
,
217
(
5
), pp.
505
514
.10.1243/095440603765226795
14.
Wang
,
E.
,
Manjunath
,
M.
,
Awasthi
,
A. P.
,
Pal
,
R. K.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
,
2014
, “
High-Amplitude Elastic Solitary Wave Propagation in 1-D Granular Chains With Preconditioned Beads: Experiments and Theoretical Analysis
,”
J. Mech. Phys. Solids
,
72
, pp.
161
173
.10.1016/j.jmps.2014.08.002
15.
Pal
,
R. K.
,
Morton
,
J.
,
Wang
,
E.
,
Lambros
,
J.
, and
Geubelle
,
P. H.
,
2015
, “
Impact Response of Elasto-Plastic Granular Chains Containing an Intruder Particle
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011002
.10.1115/1.4028959
16.
Burgoyne
,
H. A.
, and
Daraio
,
C.
,
2014
, “
Strain-Rate-Dependent Model for the Dynamic Compression of Elastoplastic Spheres
,”
Phys. Rev. E
,
89
(
3
), p.
032203
.10.1103/PhysRevE.89.032203
17.
Pal
,
R. K.
,
Awasthi
,
A. P.
, and
Geubelle
,
P. H.
,
2013
, “
Wave Propagation in Elasto-Plastic Granular Systems
,”
Granular Matter
,
15
(
6
), pp.
747
758
.10.1007/s10035-013-0449-1
18.
On
,
T.
,
LaVigne
,
P. A.
, and
Lambros
,
J.
,
2014
, “
Development of Plastic Nonlinear Waves in One-Dimensional Ductile Granular Chains Under Impact Loading
,”
Mech. Mater.
,
68
, pp.
29
37
.10.1016/j.mechmat.2013.06.013
19.
Nguyen
,
N.-S.
, and
Brogliato
,
B.
,
2012
, “
Shock Dynamics in Granular Chains: Numerical Simulations and Comparison With Experimental Tests
,”
Granular Matter
,
14
(
3
), pp.
341
362
.10.1007/s10035-012-0338-z
20.
Zhao
,
Z.
,
Liu
,
C.
, and
Brogliato
,
B.
,
2008
, “
Energy Dissipation and Dispersion Effects in Granular Media
,”
Phys. Rev. E
,
78
(
3
), p.
031307
.10.1103/PhysRevE.78.031307
21.
Pal
,
R. K.
,
Awasthi
,
A. P.
, and
Geubelle
,
P. H.
,
2014
, “
Characterization of Wave Propagation in Elastic and Elastoplastic Granular Chains
,”
Phys. Rev. E
,
89
(
1
), p.
012204
.10.1103/PhysRevE.89.012204
22.
Vergara
,
L.
,
2010
, “
Model for Dissipative Highly Nonlinear Waves in Dry Granular Systems
,”
Phys. Rev. Lett.
,
104
(
11
), p.
118001
.10.1103/PhysRevLett.104.118001
23.
Carretero-González
,
R.
,
Khatri
,
D.
,
Porter
,
M. A.
,
Kevrekidis
,
P.
, and
Daraio
,
C.
,
2009
, “
Dissipative Solitary Waves in Granular Crystals
,”
Phys. Rev. Lett.
,
102
(
2
), p.
024102
.10.1103/PhysRevLett.102.024102
24.
Rosas
,
A.
,
Romero
,
A. H.
,
Nesterenko
,
V. F.
, and
Lindenberg
,
K.
,
2007
, “
Observation of Two-Wave Structure in Strongly Nonlinear Dissipative Granular Chains
,”
Phys. Rev. Lett.
,
98
(
16
), p.
164301
.10.1103/PhysRevLett.98.164301
25.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J.-M.
, and
Pöschel
,
T.
,
1996
, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
,
53
(
5
), p.
5382
.10.1103/PhysRevE.53.5382
26.
Wang
,
S.
, and
Nesterenko
,
V.
,
2015
, “
Attenuation of Short Strongly Nonlinear Stress Pulses in Dissipative Granular Chains
,”
Phys. Rev. E
,
91
(
6
), p.
062211
.10.1103/PhysRevE.91.062211
27.
Ma
,
D.
, and
Liu
,
C.
,
2015
, “
Contact Law and Coefficient of Restitution in Elastoplastic Spheres
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121006
.10.1115/1.4031483
28.
Wang
,
H.
,
Yin
,
X.
,
Qi
,
X.
,
Deng
,
Q.
,
Yu
,
B.
, and
Hao
,
Q.
,
2017
, “
Experimental and Theoretical Analysis of the Elastic-Plastic Normal Repeated Impacts of a Sphere on a Beam
,”
Int. J. Solids Struct.
,
109
, pp.
131
142
.10.1016/j.ijsolstr.2017.01.014
29.
Wang
,
H.
,
Yin
,
X.
,
Deng
,
Q.
,
Yu
,
B.
,
Hao
,
Q.
, and
Dong
,
X.
,
2017
, “
Experimental and Theoretical Analyses of Elastic-Plastic Repeated Impacts by Considering Wave Effects
,”
Eur. J. Mech.-A/Solids
,
65
, pp.
212
222
.10.1016/j.euromechsol.2017.04.006
30.
Jiang
,
J.
, and
Yang
,
J.
,
2018
, “
Coupled Fluid Flow and Geomechanics Modeling of Stress-Sensitive Production Behavior in Fractured Shale Gas Reservoirs
,”
Int. J. Rock Mech. Min. Sci.
,
101
, pp.
1
12
.10.1016/j.ijrmms.2017.11.003
31.
Ruiz-Angulo
,
A.
,
Roshankhah
,
S.
, and
Hunt
,
M. L.
,
2019
, “
Surface Deformation and Rebound for Normal Single-Particle Collisions in a Surrounding Fluid
,”
ASME J. Fluid Mech.
,
871
, pp.
1044
1066
.10.1017/jfm.2019.349
32.
Daraio
,
C.
, and
Nesterenko
,
V.
,
2006
, “
Strongly Nonlinear Wave Dynamics in a Chain of Polymer Coated Beads
,”
Phys. Rev. E
,
73
(
2
), p.
026612
.10.1103/PhysRevE.73.026612
33.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2
), p.
026610
.10.1103/PhysRevE.73.026610
34.
Burgoyne
,
H. A.
, and
Daraio
,
C.
,
2015
, “
Elastic–Plastic Wave Propagation in Uniform and Periodic Granular Chains
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081002
.10.1115/1.4030458
35.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.10.1115/1.1866166
36.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Oxford University Press
,
London
.
37.
Kogut
,
L.
, and
Komvopoulos
,
K.
,
2004
, “
Analysis of the Spherical Indentation Cycle for Elastic–Perfectly Plastic Solids
,”
J. Mater. Res.
,
19
(
12
), pp.
3641
3653
.10.1557/JMR.2004.0468
38.
Ye
,
N.
, and
Komvopoulos
,
K.
,
2003
, “
Indentation Analysis of Elastic-Plastic Homogeneous and Layered Media: Criteria for Determining the Real Material Hardness
,”
ASME J. Tribol.
,
125
(
4
), pp.
685
691
.10.1115/1.1572515
39.
Wu
,
C.-y.
,
Li
,
L.-y.
, and
Thornton
,
C.
,
2003
, “
Rebound Behaviour of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
.10.1016/S0734-743X(03)00014-9
40.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
.10.1115/1.2787319
41.
Wang
,
S.-X.
,
Wang
,
Y.-H.
, and
He
,
B.-Y.
,
2008
, “
Dynamic Modeling of Flexible Multibody Systems With Parameter Uncertainty
,”
Chaos, Solitons Fractals
,
36
(
3
), pp.
605
611
.10.1016/j.chaos.2006.06.091
You do not currently have access to this content.