Abstract

Design of piezo-electric actuated cutting tools requires carefully controlling the response characteristics while minimizing the energy input for an efficient design. Many times, nonlinearities are seen as a burden in cutting tool design process as they can result in unpredictable and extremely sensitive response. As such, engineers make design changes to effectively minimize or completely eliminate the nonlinear behavior and that has been a practice in biomedical device design industry. In this paper, the periodic response of buckled beams under piezo-excitation is considered. An optimization approach, as first demonstrated in Refs. [1] and [2], is utilized that achieves maximum amplitude, periodic, and stable responses of the beam systems. Case studies are presented that demonstrate the utility of this optimization approach to exploit the nonlinear dynamics to achieve desired responses. This work presents a new, global optimization driven, computational design approach for medical devices while exploiting nonlinearity in response dynamics.

References

References
1.
Wilson
,
J. M.
,
Shukla
,
A.
, and
Olson
,
W.
,
2016
, “
Exploitation of Nonlinear Dynamics of Buckled Beams
,”
ASME
Paper No. DETC2016-59208. 10.1115/DETC2016-59208
2.
Wilson
,
J. M.
,
Shukla
,
A.
, and
Olson
,
W.
,
2017
, “
Optimizing Periodic Response of Piezo-Driven Nonlinear Buckled Beam
,”
ASME
Paper No. DETC2017-67450. 10.1115/DETC2017-67450
3.
Liao
,
H.
,
2013
, “
Constrained Optimization Shooting Method for Predicting the Periodic Solutions of Nonlinear System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041006
.10.1115/1.4023916
4.
Kurdi
,
M.
,
Beran
,
P.
,
Stanford
,
B.
, and
Snyder
,
R.
,
2010
, “
Optimal Actuation of Nonlinear Resonant Systems
,”
Struct. Multidiscip. Optim.
,
41
(
1
), pp.
65
86
.10.1007/s00158-009-0398-9
5.
Brzeski
,
P.
,
Perlikowski
,
P.
, and
Kapitaniak
,
T.
,
2014
, “
Numerical Optimization of Tuned Mass Absorbers Attached to Strongly Nonlinear Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
1
), pp.
298
310
.10.1016/j.cnsns.2013.06.001
6.
Tseng
,
W.-Y.
, and
Dugundji
,
J.
,
1970
, “
Nonlinear Vibrations of a Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
37
(
2
), pp.
292
297
.10.1115/1.3408504
7.
Yamaki
,
N. A.
,
Otomo
,
K.
, and
Mori
,
A.
,
1980
, “
Non-Linear Vibrations of a Clamped Beam With Initial Deflection and Initial Axial Displacement—Part II: Experiment
,”
J. Sound Vib.
,
71
(
3
), pp.
347
360
.10.1016/0022-460X(80)90418-6
8.
Lacarbonara
,
W.
,
1997
, “
A Theoretical and Experimental Investigation of Nonlinear Vibrations of Buckled Beams
,”
Ph.D. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/36721
9.
Emam
,
S. A.
,
2002
, “
A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams
,”
Ph.D. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/25970
10.
DeVoe
,
D. L.
, and
Pisano
,
A. P.
,
1997
, “
Modeling and Optimal Design of Piezoelectric Cantilever Microactuators
,”
J. Microelectromech. Syst.
,
6
(
3
), pp.
266
270
.10.1109/84.623116
11.
Elvin
,
N. G.
,
Elvin
,
A. A.
, and
Spector
,
M.
,
2001
, “
A Self-Powered Mechanical Strain Energy Sensor
,”
Smart Mater. Struct.
,
10
(
2
), p.
293
.10.1088/0964-1726/10/2/314
12.
Eggborn
,
T.
,
2003
, “
Analytical Models to Predict Power Harvesting With Piezoelectric Materials
,”
M.S. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/32981
13.
Li
,
H.
,
Preidikman
,
S.
,
Balachandran
,
B.
, and
Mote Jr
,
C. D.
,
2006
, “
Nonlinear Free and Forced Oscillations of Piezoelectric Microresonators
,”
J. Micromech. Microeng.
,
16
(
2
), p.
356
.10.1088/0960-1317/16/2/021
14.
Waugh
,
W. H.
,
Gallacher
,
B.
, and
Burdess
,
J.
,
2011
, “
A High-Sensitivity Resonant Sensor Realized Through the Exploitation of Nonlinear Dynamic Behaviour
,”
Meas. Sci. Technol.
,
22
(
10
), p.
105202
.10.1088/0957-0233/22/10/105202
15.
Kumar
,
V.
,
Boley
,
J. W.
,
Yang
,
Y.
,
Ekowaluyo
,
H.
,
Miller
,
J. K.
,
Chiu
,
G. T.-C.
, and
Rhoads
,
J. F.
,
2011
, “
Bifurcation-Based Mass Sensing Using Piezoelectrically-Actuated Microcantilevers
,”
Appl. Phys. Lett.
,
98
(
15
), p.
153510
.10.1063/1.3574920
16.
Nguyen
,
H. X.
,
Edeler
,
C.
, and
Fatikow
,
S.
,
2013
, “
Modeling of Piezo-Actuated Stick-Slip Micro-Drives: An Overview
,”
Advances in Science and Technology
, Vol.
81
,
Trans Tech Publications
,
Switzerland
, pp.
39
48
.
17.
Dick
,
A. J.
,
2013
, “
Characterizing Effective d31 Values for PZT From the Nonlinear Oscillations of Clamped-Clamped Micro-Resonators
,”
Strojniški vestnik—J. Mech. Eng.
,
59
(
1
), pp.
50
55
.10.5545/sv-jme.2012.673
18.
Ge
,
P.
, and
Jouaneh
,
M.
,
1995
, “
Modeling Hysteresis in Piezoceramic Actuators
,”
Precis. Eng.
,
17
(
3
), pp.
211
221
.10.1016/0141-6359(95)00002-U
19.
Ikeda
,
T.
,
1996
,
Fundamentals of Piezoelectricity
,
Oxford University Press
,
New York
.
20.
Preisach
,
F.
,
1935
, “
Über Die Magnetische Nachwirkung
,”
Z. Für Physik
,
94
(
5–6
), pp.
277
302
.10.1007/BF01349418
21.
Kenmochi
,
N.
, and
Visintin
,
A.
,
1994
, “
Asymptotic Stability for Nonlinear PDES With Hysteresis
,”
Eur. J. Appl. Math.
,
5
(
1
), pp.
39
56
.10.1017/S0956792500001285
22.
Garmón
,
F. A.
,
Ang
,
W. T.
,
Khosla
,
P.
, and
Riviere
,
C. N.
,
2003
, “
Rate-Dependent Inverse Hysteresis Feedforward Controller for Microsurgical Tool
,”
IEEE 25th Annual International Conference on Engineering in Medicine and Biology Society
, Vol.
4
, Cancun, Mexico, Sept. 17–21, pp.
3415
3418
.
23.
Bashash
,
S.
, and
Jalili
,
N.
,
2007
, “
Intelligence Rules of Hysteresis in the Feedforward Trajectory Control of Piezoelectrically-Driven Nanostagers
,”
J. Micromech. Microeng.
,
17
(
2
), p.
342
.10.1088/0960-1317/17/2/021
24.
Jouaneh
,
M.
, and
Tian
,
H.
,
1992
, “
Accuracy Enhancement of a Piezoelectric Actuator With Hysteresis
,”
Japan/USA Symposium on Flexible Automation
, Vol.
1
, Tokyo, Japan, pp.
631
637
.
25.
Rathi
,
V.
, and
Khan
,
A. H.
,
2012
, “
Vibration Attenuation and Shape Control of Surface Mounted, Embedded Smart Beam
,”
Latin Am. J. Solids Struct.
,
9
(
3
), pp.
1
25
.10.1590/S1679-78252012000300006
26.
Moheimani
,
S. R.
, and
Fleming
,
A. J.
,
2006
,
Piezoelectric Transducers for Vibration Control and Damping
,
Springer Science & Business Media
,
London
.
27.
Low
,
T.
, and
Guo
,
W.
,
1995
, “
Modeling of a Three-Layer Piezoelectric Bimorph Beam With Hysteresis
,”
Microelectromech. Syst. J.
,
4
(
4
), pp.
230
237
.10.1109/84.475550
28.
Donoso
,
A.
, and
Sigmund
,
O.
,
2009
, “
Optimization of Piezoelectric Bimorph Actuators With Active Damping for Static and Dynamic Loads
,”
Struct. Multidiscip. Optim.
,
38
(
2
), pp.
171
183
.10.1007/s00158-008-0273-0
29.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2008
, “
Nonlinear Normal Modes—Part II: Practical Computation Using Numerical Continuation Techniques
,”
26th International Modal Analysis Conference
, Orlando, FL.
30.
Sracic
,
M. W.
, and
Allen
,
M. S.
,
2011
, “
Numerical Continuation of Periodic Orbits for Harmonically Forced Nonlinear Systems
,”
Civil Engineering Topics (Conference Proceedings of the Society for Experimental Mechanics Series
, Vol.
4
), T. Proulx, ed.,
Springer
,
Berlin
, pp.
51
69
.
31.
Egea
,
J. A.
,
Henriques
,
D.
,
Cokelaer
,
T.
,
Villaverde
,
A. F.
,
MacNamara
,
A.
,
Danciu
,
D.-P.
,
Banga
,
J. R.
, and
Saez-Rodriguez
,
J.
,
2014
, “
Meigo: An Open-Source Software Suite Based on Metaheuristics for Global Optimization in Systems Biology and Bioinformatics
,”
BMC Bioinf.
,
15
(
1
), p.
136
.10.1186/1471-2105-15-136
You do not currently have access to this content.