Abstract

The a priori multi-expansion modal (MEM) hyper-reduction method for nonlinear structural dynamics finite element (FE) problems is described, extended, and applied to the dynamic nonlinear FE simulation of a car tire rolling over a rough road surface, including geometrical, material, follower force, and contact nonlinearities. Rather than using time-domain training simulation data, a priori calculated static nonlinear contact configurations and eigenmodes are used as a reduction basis and to perform the hyper-reduction element sampling. The hyper-reduction element sampling is performed by solving an L1 optimization problem subject to a set of equality constraints. This yields a reduced set of elements with an a priori known cardinality, which depends on the amount of constraints taken into consideration and the reduction basis dimension. It is shown that care has to be taken during the hyper-reduction process when considering distributed contact constraints, as is the case for, e.g., a tire rolling over a rough road surface. Large speedup factors can be obtained while still retaining a relatively high accuracy, making application of the MEM method suitable to, for instance, industrial design optimization cases.

References

References
1.
Gent
,
A. N.
, and
Walter
,
J. D.
,
2006
,
The Pneumatic Tire
,
University of Akron/United States, National Highway Traffic Safety Administration
,
Washington, DC
.
2.
Gipser
,
M.
,
2007
, “
FTire—The Tire Simulation Model for All Applications Related to Vehicle Dynamics
,”
Veh. Syst. Dyn.
,
45
(
Suppl. 1
), pp.
139
151
.10.1080/00423110801899960
3.
Oertel
,
C.
, and
Fandre
,
A.
,
1999
, “
Ride Comfort Simulations and Steps Towards Life Time Calculations: RMOD-K and ADAMS
,”
International ADAMS Users Conference
,
Berlin, Germany
,
Nov. 17–18
, pp.
1
17
.
4.
Alujevic
,
N.
,
Campillo-Davo
,
N.
,
Kindt
,
P.
,
Desmet
,
W.
,
Pluymers
,
B.
, and
Vercammen
,
S.
,
2015
, “
A Simplified Tire Model Based on a Rotating Shell
,”
Fourth International Tyre Colloquium,
Guildford, UK
,
Apr. 20–21
, pp.
382
391
.
5.
Kindt
,
P.
,
Sas
,
P.
, and
Desmet
,
W.
,
2009
, “
Development and Validation of a Three-Dimensional Ring-Based Structural Tyre Model
,”
J. Sound Vib.
,
326
(
3–5
), pp.
852
869
.10.1016/j.jsv.2009.05.019
6.
Larsson
,
K.
, and
Kropp
,
W.
,
2002
, “
A High-Frequency Three-Dimensional Tyre Model Based on Two Coupled Elastic Layers
,”
J. Sound Vib.
,
253
(
4
), pp.
889
908
.10.1006/jsvi.2001.4073
7.
Brinkmeier
,
M.
,
Nackenhorst
,
U.
,
Petersen
,
S.
, and
Von Estorff
,
O.
,
2008
, “
A Finite Element Approach for the Simulation of Tire Rolling Noise
,”
J. Sound Vib.
,
309
(
1–2
), pp.
20
39
.10.1016/j.jsv.2006.11.040
8.
Gonzalez Diaz
,
C.
,
Kindt
,
P.
,
Middelberg
,
J.
,
Vercammen
,
S.
,
Thiry
,
C.
,
Close
,
R.
, and
Leyssens
,
J.
,
2016
, “
Dynamic Behaviour of a Rolling Tyre: Experimental and Numerical Analyses
,”
J. Sound Vib.
,
364
, pp.
147
164
.10.1016/j.jsv.2015.11.025
9.
Vercammen
,
S.
,
Kindt
,
P.
,
Gonzalez Diaz
,
C.
, and
Desmet
,
W.
,
2014
, “
Synopsis of the Experimental and Numerical Tire Dynamic Characterization
,”
FISITA 2014 World Automotive Congress
,
Maastricht, The Netherlands
,
June 2–6
, Paper No. F2014-NVH-078.
10.
Benner
,
P.
,
Ohlberger
,
M.
,
Cohen
,
A.
, and
Willcox
,
K.
,
2017
,
Model Reduction and Approximation
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
11.
Blockmans
,
B.
,
Tamarozzi
,
T.
,
Naets
,
F.
, and
Desmet
,
W.
,
2015
, “
A Nonlinear Parametric Model Reduction Method for Efficient Gear Contact Simulations
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1162
1191
.10.1002/nme.4831
12.
Farhat
,
C.
,
Avery
,
P.
,
Chapman
,
T.
, and
Cortial
,
J.
,
2014
, “
Dimensional Reduction of Nonlinear Finite Element Dynamic Models With Finite Rotations and Energy-Based Mesh Sampling and Weighting for Computational Efficiency
,”
Int. J. Numer. Methods Eng.
,
98
(
9
), pp.
625
662
.10.1002/nme.4668
13.
Farhat
,
C.
,
Chapman
,
T.
, and
Avery
,
P.
,
2015
, “
Structure-Preserving, Stability, and Accuracy Properties of the Energy-Conserving Sampling and Weighting Method for the Hyper Reduction of Nonlinear Finite Element Dynamic Models
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1077
1110
.10.1002/nme.4820
14.
Idelsohn
,
S. R.
, and
Cardona
,
A.
,
1985
, “
A Reduction Method for Nonlinear Structural Dynamic Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
3
), pp.
253
279
.10.1016/0045-7825(85)90125-2
15.
Rutzmoser
,
J.
,
Rixen
,
D.
,
Tiso
,
P.
, and
Jain
,
S.
,
2017
, “
Generalization of Quadratic Manifolds for Reduced Order Modeling of Nonlinear Structural Dynamics
,”
Comput. Struct.
,
192
, pp.
196
209
.10.1016/j.compstruc.2017.06.003
16.
Weeger
,
O.
,
Wever
,
U.
, and
Simeon
,
B.
,
2016
, “
On the Use of Modal Derivatives for Nonlinear Model Order Reduction
,”
Int. J. Numer. Methods Eng.
,
108
(
13
), pp.
1579
1602
.10.1002/nme.5267
17.
Jain
,
S.
, and
Tiso
,
P.
,
2018
, “
Simulation-Free Hyper-Reduction for Geometrically Nonlinear Structural Dynamics: A Quadratic Manifold Lifting Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071003
.10.1115/1.4040021
18.
Cappellini
,
N.
,
Tamarozzi
,
T.
,
Blockmans
,
B.
,
Fiszer
,
J.
,
Cosco
,
F.
, and
Desmet
,
W.
,
2018
, “
Semi-Analytic Contact Technique in a Non-Linear Parametric Model Order Reduction Method for Gear Simulations
,”
Meccanica
,
53
(
1–2
), pp.
49
75
.10.1007/s11012-017-0710-5
19.
Fiszer
,
J.
,
Tamarozzi
,
T.
,
Blockmans
,
B.
, and
Desmet
,
W.
,
2015
, “
A Time-Dependent Parametric Model Order Reduction Technique for Modelling Indirect Bearing Force Measurements
,”
Mech. Mach. Theory
,
83
, pp.
152
174
.10.1016/j.mechmachtheory.2014.09.008
20.
Naets
,
F.
,
De Gregoriis
,
D.
, and
Desmet
,
W.
,
2019
, “
Multi-Expansion Modal Reduction: A Pragmatic Semi–A Priori Model Order Reduction Approach for Nonlinear Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
118
(
13
), pp.
765
782
.10.1002/nme.6034
21.
Tamarozzi
,
T.
,
2014
, “
Efficient Numerical Simulation Strategies for Flexible Multibody Systems With Variable Topology
,” Ph.D. thesis,
KU Leuven
,
Leuven, Belgium
.
22.
Tamarozzi
,
T.
,
Ziegler
,
P.
,
Eberhard
,
P.
, and
Desmet
,
W.
,
2013
, “
Static Modes Switching in Gear Contact Simulation
,”
Mech. Mach. Theory
,
63
, pp.
89
106
.10.1016/j.mechmachtheory.2013.01.006
23.
Ryckelynck
,
D.
,
2005
, “
A Priori Hyper-reduction Method: An Adaptive Approach
,”
J. Comput. Phys.
,
202
(
1
), pp.
346
366
.10.1016/j.jcp.2004.07.015
24.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.10.1137/090766498
25.
Tiso
,
P.
, and
Rixen
,
D. J.
,
2013
, “
Discrete Empirical Interpolation Method for Finite Element Structural Dynamics
,”
Topics in Nonlinear Dynamics
,
G.
Kerschen
,
D.
Adams
, and
A.
Carrella
, eds., Vol.
1
,
Springer
,
New York
, pp.
203
212
.
26.
Rutzmoser
,
J.
, and
Rixen
,
D.
,
2017
, “
A Lean and Efficient Snapshot Generation Technique for the Hyper-Reduction of Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
330
349
.10.1016/j.cma.2017.06.009
27.
Vercammen
,
S.
,
2017
, “
Tyre/Road Noise Due to Road Surface Texture Excitations: Experimental and Numerical Analyses
,” Ph.D. thesis,
KU Leuven
,
Leuven, Belgium
.
28.
Nackenhorst
,
U.
,
2004
, “
The ALE-Formulation of Bodies in Rolling Contact: Theoretical Foundations and Finite Element Approach
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
39–41
), pp.
4299
4322
.10.1016/j.cma.2004.01.033
29.
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Upper Saddle River, NJ
.
30.
Felippa
,
C.
, and
Haugen
,
B.
,
2005
, “
A Unified Formulation of Small-Strain Corotational Finite Elements—Part I: Theory
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
21–24
), pp.
2285
2335
.10.1016/j.cma.2004.07.035
31.
de Borst
,
R.
,
Crisfield
,
M. A.
,
Remmers
,
J. J.
, and
Verhoosel
,
C. V.
,
2012
,
Non-Linear Finite Element Analysis of Solids and Structures
,
2nd ed.
,
Wiley
,
Chichester, UK
.
32.
Nackenhorst
,
U.
,
2014
, “
Finite Element Analysis of Tires in Rolling Contact
,”
GAMM Mitt.
,
37
(
1
), pp.
27
65
.10.1002/gamm.201410003
33.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
34.
Ziefle
,
M.
, and
Nackenhorst
,
U.
,
2008
, “
Numerical Techniques for Rolling Rubber Wheels: Treatment of Inelastic Material Properties and Frictional Contact
,”
Comput. Mech.
,
42
(
3
), pp.
337
356
.10.1007/s00466-008-0243-9
35.
Laursen
,
T. A.
,
2003
,
Computational Contact and Impact Mechanics
,
Springer-Verlag
,
Berlin
.
36.
Suwannachit
,
A.
,
Nackenhorst
,
U.
, and
Chiarello
,
R.
,
2012
, “
Stabilized Numerical Solution for Transient Dynamic Contact of Inelastic Solids on Rough Surfaces
,”
Comput. Mech.
,
49
(
6
), pp.
769
788
.10.1007/s00466-012-0722-x
37.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Fox
,
D. D.
,
2013
,
The Finite Element Method for Solid and Structural Mechanics
,
7th ed.
,
Butterworth-Heinemann
,
Oxford, UK
.
38.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
39.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
40.
Blockmans
,
B.
,
2018
, “
Model Reduction of Contact Problems in Flexible Multibody Dynamics
,” Ph.D. thesis,
KU Leuven
,
Leuven, Belgium
.
41.
Helnwein
,
P.
,
Liu
,
C.
,
Meschke
,
G.
, and
Mang
,
H.
,
1993
, “
A New 3-D Finite Element Model for Cord-Reinforced Rubber Composites—Application to Analysis of Automobile Tires
,”
Finite Elem. Anal. Des.
,
14
(
1
), pp.
1
16
.10.1016/0168-874X(93)90075-2
42.
Dassault Systèmes Simulia
,
2012
,
Abaqus Example Problems Manual
,
Dassault Systèmes
,
Providence, RI
.
43.
Baranowski
,
P.
,
Malachowski
,
J.
,
Janiszewski
,
J.
, and
Wekezer
,
J.
,
2016
, “
Detailed Tyre fe Modelling With Multistage Validation for Dynamic Analysis
,”
Mater. Des.
,
96
, pp.
68
79
.10.1016/j.matdes.2016.02.029
44.
Guo
,
H.
,
Bastien
,
C.
,
Blundell
,
M.
, and
Wood
,
G.
,
2014
, “
Development of a Detailed Aircraft Tyre Finite Element Model for Safety Assessment
,”
Mater. Des.
,
53
, pp.
902
909
.10.1016/j.matdes.2013.05.046
45.
Behroozi
,
M.
,
Olatunbosun
,
O.
, and
Ding
,
W.
,
2012
, “
Finite Element Analysis of Aircraft Tyre—Effect of Model Complexity on Tyre Performance Characteristics
,”
Mater. Des.
,
35
, pp.
810
819
.10.1016/j.matdes.2011.05.055
You do not currently have access to this content.