Abstract

In this paper, the strange nonchaotic dynamics of a quasi-periodically driven state-controlled cellular neural network (SC-CNN) based on a simple chaotic circuit is investigated using hardware experiments and numerical simulations. We report here two different routes to strange nonchaotic attractors (SNAs) taken by this SC-CNN based circuit system. These routes were confirmed using rational approximation (RA) theory, finite time Lyapunov exponents, spectrum of the largest Lyapunov exponents and their variance, and phase sensitivity exponent. It is observed that the results from both computer simulations as well as laboratory experiments have spectacular resemblance.

References

References
1.
Grebogi
,
C.
,
Ott
,
E.
,
Pelikan
,
S.
, and
Yorke
,
J. A.
,
1984
, “
Strange Attractors That Are Not Chaotic
,”
Physics D
,
13
(
1–2
), pp.
261
268
.10.1016/0167-2789(84)90282-3
2.
Romeiras
,
F. J.
, and
Ott
,
E.
,
1987
, “
Strange Nonchaotic Attractors of the Damped Pendulum With Quasiperiodic Forcing
,”
Phys. Rev. A
,
35
(
10
), p.
4404
.10.1103/PhysRevA.35.4404
3.
Venkatesan
,
A.
, and
Lakshmanan
,
M.
,
1997
, “
Nonlinear Dynamics of Damped and Driven Velocity-Dependent Systems
,”
Phys. Rev. E
,
55
(
5
), p.
5134
.10.1103/PhysRevE.55.5134
4.
Ketchamen
,
E. N.
,
Nana
,
L.
, and
Kofane
,
T.
,
2004
, “
Strange Nonchaotic Attractors in the Externally Modulated Rayleigh–Bénard System
,”
Chaos, Solitons Fractals
,
20
(
5
), pp.
1141
1148
.10.1016/j.chaos.2003.09.040
5.
Lee
,
S. G.
,
Neiman
,
A.
, and
Kim
,
S.
,
1998
, “
Coherence Resonance in a Hodgkin-Huxley Neuron
,”
Phys. Rev. E
,
57
(
3
), p.
3292
.10.1103/PhysRevE.57.3292
6.
Prasad
,
A.
,
Mehra
,
V.
, and
Ramaswamy
,
R.
,
1998
, “
Strange Nonchaotic Attractors in the Quasiperiodically Forced Logistic Map
,”
Phys. Rev. E
,
57
(
2
), p.
1576
.10.1103/PhysRevE.57.1576
7.
Ding
,
M.
, and
Kelso
,
J. S.
,
1994
, “
Phase-Resetting Map and the Dynamics of Quasi-Periodically Forced Biological Oscillators
,”
Int. J. Bifurcation Chaos
,
4
(
3
), pp.
553
567
.10.1142/S0218127494000393
8.
Ketoja
,
J. A.
, and
Satija
,
I. I.
,
1997
, “
Harper Equation, the Dissipative Standard Map and Strange Nonchaotic Attractors: Relationship Between an Eigenvalue Problem and Iterated Maps
,”
Physics D
,
109
(
1–2
), pp.
70
80
.10.1016/S0167-2789(97)00160-7
9.
Jalnine
,
A. Y.
, and
Kuznetsov
,
S. P.
,
2017
, “
Autonomous Strange Nonchaotic Oscillations in a System of Mechanical Rotators
,”
Regul. Chaotic Dyn.
,
22
(
3
), pp.
210
225
.10.1134/S1560354717030029
10.
Ditto
,
W.
,
Spano
,
M.
,
Savage
,
H.
,
Rauseo
,
S.
,
Heagy
,
J.
, and
Ott
,
E.
,
1990
, “
Experimental Observation of a Strange Nonchaotic Attractor
,”
Phys. Rev. Lett.
,
65
(
5
), p.
533
.10.1103/PhysRevLett.65.533
11.
Yang
,
T.
, and
Bilimgut
,
K.
,
1997
, “
Experimental Results of Strange Nonchaotic Phenomenon in a Second-Order Quasi-Periodically Forced Electronic Circuit
,”
Phys. Lett. A
,
236
(
5–6
), pp.
494
504
.10.1016/S0375-9601(97)00833-5
12.
Thamilmaran
,
K.
,
Senthilkumar
,
D.
,
Venkatesan
,
A.
, and
Lakshmanan
,
M.
,
2006
, “
Experimental Realization of Strange Nonchaotic Attractors in a Quasiperiodically Forced Electronic Circuit
,”
Phys. Rev. E
,
74
(
3
), p.
036205
.10.1103/PhysRevE.74.036205
13.
Arulgnanam
,
A.
,
Prasad
,
A.
,
Thamilmaran
,
K.
, and
Daniel
,
M.
,
2015
, “
Multilayered Bubbling Route to SNA in a Quasiperiodically Forced Electronic Circuit With Experimental and Analytical Confirmation
,”
Chaos, Solitons Fractals
,
75
, pp.
96
110
.10.1016/j.chaos.2015.02.006
14.
Feng
,
C.
,
Cai
,
L.
,
Kang
,
Q.
,
Wang
,
S.
, and
Zhang
,
H.
,
2015
, “
Novel Hyperchaotic System and Its Circuit Implementation
,”
J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061012
.10.1115/1.4029227
15.
Ruiz
,
G.
, and
Parmananda
,
P.
,
2007
, “
Experimental Observation of Strange Nonchaotic Attractors in a Driven Excitable System
,”
Phys. Lett. A
,
367
(
6
), pp.
478
482
.10.1016/j.physleta.2007.03.053
16.
Ding
,
W.
,
Deutsch
,
H.
,
Dinklage
,
A.
, and
Wilke
,
C.
,
1997
, “
Observation of a Strange Nonchaotic Attractor in a Neon Glow Discharge
,”
Phys. Rev. E
,
55
(
3
), p.
3769
.10.1103/PhysRevE.55.3769
17.
Zhu
,
Z.
,
Wang
,
S.
, and
Leung
,
H.
,
1998
, “
Strange Nonchaotic Attractors With Cellular Neural Networks
,”
Int. J. Bifurcation Chaos
,
8
(
7
), pp.
1551
1556
.10.1142/S0218127498001194
18.
Lindner
,
J. F.
,
Kohar
,
V.
,
Kia
,
B.
,
Hippke
,
M.
,
Learned
,
J. G.
, and
Ditto
,
W. L.
,
2015
, “
Strange Nonchaotic Stars
,”
Phys. Rev. Lett.
,
114
(
5
), p.
054101
.10.1103/PhysRevLett.114.054101
19.
Sathish Aravindh
,
M.
,
Venkatesan
,
A.
, and
Lakshmanan
,
M.
,
2018
, “
Strange Nonchaotic Attractors for Computation
,”
Phys. Rev. E
,
97
(
5–1
), p.
052212
.10.1103/PhysRevE.97.052212
20.
Senthilkumar
,
D.
,
Srinivasan
,
K.
,
Thamilmaran
,
K.
, and
Lakshmanan
,
M.
,
2008
, “
Bubbling Route to Strange Nonchaotic Attractor in a Nonlinear Series LCR Circuit With a Nonsinusoidal Force
,”
Phys. Rev. E
,
78
(
6
), p.
066211
.10.1103/PhysRevE.78.066211
21.
Srinivasan
,
K.
,
Senthilkumar
,
D. V.
,
Suresh
,
R.
,
Thamilmaran
,
K.
, and
Lakshmanan
,
M.
,
2009
, “
Experimental Realization of Strange Nonchaotic Attractors in a Nonlinear Series LCR Circuit With Nonsinusoidal Force
,”
Int. J. Bifurcation Chaos
,
19
(
12
), pp.
4131
4163
.10.1142/S0218127409025262
22.
Suresh
,
K.
,
Prasad
,
A.
, and
Thamilmaran
,
K.
,
2013
, “
Birth of Strange Nonchaotic Attractors Through Formation and Merging of Bubbles in a Quasiperiodically Forced Chua's Oscillator
,”
Phys. Lett. A
,
377
(
8
), pp.
612
621
.10.1016/j.physleta.2012.12.026
23.
Chua
,
L. O.
, and
Yang
,
L.
,
1988
, “
Cellular Neural Networks: Theory
,”
IEEE Trans. Circuits Syst.
,
35
(
10
), pp.
1257
1272
.10.1109/31.7600
24.
Chua
,
L. O.
,
Hasler
,
M.
,
Moschytz
,
G. S.
, and
Neirynck
,
J.
,
1995
, “
Autonomous Cellular Neural Networks: A Unified Paradigm for Pattern Formation and Active Wave Propagation
,”
IEEE Trans. Circuits Syst. I
,
42
(
10
), pp.
559
577
.10.1109/81.473564
25.
Li
,
L.
,
Wang
,
Z.
,
Li
,
Y.
,
Shen
,
H.
, and
Lu
,
J.
,
2018
, “
Hopf Bifurcation Analysis of a Complex-Valued Neural Network Model With Discrete and Distributed Delays
,”
Appl. Math. Comput.
,
330
, pp.
152
169
.10.1016/j.amc.2018.02.029
26.
Wang
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Huang
,
X.
,
2017
, “
Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model With Time Delay
,”
Int. J. Bifurcation Chaos
,
27
(
13
), p.
1750209
.10.1142/S0218127417502091
27.
Swathy
,
P.
, and
Thamilmaran
,
K.
,
2014
, “
Hyperchaos in SC-CNN Based Modified Canonical Chua's Circuit
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2639
2650
.10.1007/s11071-014-1615-7
28.
Günay
,
E.
,
2010
, “
MLC Circuit in the Frame of CNN
,”
Int. J. Bifurcation Chaos
,
20
(
10
), pp.
3267
3274
.10.1142/S0218127410027659
29.
Megavarna Ezhilarasu
,
P.
,
Inbavalli
,
M.
,
Murali
,
K.
, and
Thamilmaran
,
K.
,
2018
, “
Strange Non-Chaotic Attractors in a State Controlled-Cellular Neural Network-Based Quasiperiodically Forced MLC Circuit
,”
Pramana
,
91
(
1
), p.
4
.10.1007/s12043-018-1575-4
30.
Swathy
,
P. S.
, and
Thamilmaran
,
K.
,
2014
, “
Dynamics of SC-CNN Based Variant of MLC Circuit: An Experimental Study
,”
Int. J. Bifurcation. Chaos
,
24
(
02
), p.
1430008
.10.1142/S0218127414300080
31.
Thamilmaran
,
K.
,
Lakshmanan
,
M.
, and
Murali
,
K.
,
2000
, “
Rich Variety of Bifurcations and Chaos in a Variant of Murali–Lakshmanan–Chua Circuit
,”
Int. J. Bifurcation Chaos
,
10
(
7
), pp.
1781
1785
.10.1142/S0218127400001109
32.
Biey
,
M.
,
Checco
,
P.
, and
Gilli
,
M.
,
2003
, “
Bifurcations and Chaos in Cellular Neural Networks
,”
J. Circuits, Syst., Comput.
,
12
(
4
), pp.
417
433
.10.1142/S0218126603000957
33.
Babloyantz
,
A.
,
Salazar
,
J.
, and
Nicolis
,
C.
,
1985
, “
Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle
,”
Phys. Lett. A
,
111
(
3
), pp.
152
156
.10.1016/0375-9601(85)90444-X
34.
Freeman
,
W. J.
,
1987
, “
Simulation of Chaotic EEG Patterns With a Dynamic Model of the Olfactory System
,”
Biol. Cybern.
,
56
(
2–3
), pp.
139
150
.10.1007/BF00317988
35.
Lutzenberger
,
W.
,
Preissl
,
H.
, and
Pulvermúller
,
F.
,
1995
, “
Fractal Dimension of Electroencephalographic Time Series and Underlying Brain Processes
,”
Biol. Cybern.
,
73
(
5
), pp.
477
482
.10.1007/BF00201482
36.
Rombouts
,
S.
,
Keunen
,
R.
, and
Stam
,
C.
,
1995
, “
Investigation of Nonlinear Structure in Multichannel EEG
,”
Phys. Lett. A
,
202
(
5–6
), pp.
352
358
.10.1016/0375-9601(95)00335-Z
37.
Paluš
,
M.
,
1996
, “
Nonlinearity in Normal Human EEG: Cycles, Temporal Asymmetry, Nonstationarity and Randomness, not Chaos
,”
Biol. Cybern.
,
75
(
5
), pp.
389
396
.10.1007/s004220050304
38.
Stam
,
C. J.
,
Van Woerkom
,
T.
, and
Keunen
,
R.
,
1997
, “
Nonlinear Analysis of the Electroencephalogram in Creutzfeldt-Jakob Disease
,”
Biol. Cybern.
,
77
(
4
), pp.
247
256
.10.1007/s004220050385
39.
Theiler
,
J.
,
1994
, “
On the Evidence for Low-Dimensional Chaos in an Epileptic Electroencephalogram
,”
Phys. Lett. A
,
196
(
1–2
), pp.
335
341
.10.1016/0375-9601(94)91096-0
40.
Shuai
,
J. W.
,
Lian
,
J.
,
Hahn
,
P. J.
, and
Durand
,
D. M.
,
2001
, “
Positive Lyapunov Exponents Calculated From Time Series of Strange Nonchaotic Attractors
,”
Phys. Rev. E
,
64
(
2
), p.
026220
.10.1103/PhysRevE.64.026220
41.
Gray
,
C. M.
,
König
,
P.
,
Engel
,
A. K.
, and
Singer
,
W.
,
1989
, “
Oscillatory Responses in Cat Visual Cortex Exhibit Inter-Columnar Synchronization Which Reflects Global Stimulus Properties
,”
Nature
,
338
(
6213
), p.
334
.10.1038/338334a0
42.
Kim
,
J. W.
,
Kim
,
S. Y.
,
Hunt
,
B.
, and
Ott
,
E.
,
2003
, “
Fractal Properties of Robust Strange Nonchaotic Attractors in Maps of Two or More Dimensions
,”
Phys. Rev. E
,
67
(
3
), p.
036211
.10.1103/PhysRevE.67.036211
43.
Pikovsky
,
A. S.
, and
Feudel
,
U.
,
1995
, “
Characterizing Strange Nonchaotic Attractors
,”
Chaos
,
5
(
1
), pp.
253
260
.10.1063/1.166074
44.
Kobe
,
D. H.
,
1986
, “
Helmholtz's Theorem Revisited
,”
Am. J. Phys.
,
54
(
6
), pp.
552
554
.10.1119/1.14562
You do not currently have access to this content.