Abstract

During percutaneous coronary interventions (PCI), a guidewire is used as an initial way of accessing a specific vasculature. There are varieties of guidewires on the market and choosing an appropriate one for each case is critical for a safe and successful intervention. The main objective of this study is to predict the behavior of the guidewire and its performance in a vasculature prior to the procedure. Therefore, we evaluate the effectiveness of different mechanical properties of the guidewire on its behavior. A two-dimensional (2D) model has been developed in which a guidewire is considered as a set of small rigid segments connected to each other by revolute joints. These joints have two degrees-of-freedom to allow rotation. Linear torsional springs and dampers are applied in each joint to account for the elastic properties of the guidewire; the elastic properties have been measured for two commercially available guidewires (Hi-Torque Balance Middleweight Universal II—Abbot and Amplatz Super Stiff—Boston Scientific) and these are used in the model. Only translational motion has been applied to the guidewires and the effect of bending stiffness of the guidewire and also friction between guidewire and vasculature on its behavior are investigated. The results are validated with actual movement of the guidewires in a simple phantom model. Behavior of a guidewire in a vasculature was predicted using the developed model. The results of both simulation and experiment show that the behavior of a guidewire is influenced by its mechanical properties and by the friction between the guidewire and vasculature. This study is the first step to develop a complete model, which can predict the behavior of a guidewire inside the vasculature. We compared the tip trajectory for two commercial guidewires in one vasculature geometry. In future, this kind of knowledge might support not only the interventionist in choosing the best suitable guidewire for a procedure but also the designer to optimize new instrument to have the desired behavior.

References

References
1.
WHO,
2015
, “
|The Top 10 Causes of Death
,” World Health Organization,
Geneva, Switzerland
, Accessed Apr. 15,
2015
, http://www.who.int/mediacentre/factsheets/fs310/en/
2.
Smith
,
S. C.
, Jr.
Dove
,
J. T.
,
Jacobs
,
A. K.
,
Kennedy
,
J. W.
,
Kereiakes
,
D.
,
Kern
,
M. J.
,
Kuntz
,
R. E.
,
Popma
,
J. J.
,
Schaff
,
H. V.
, and
Williams
,
D. O.
,
2001
, “
ACC/AHA Guidelines of Percutaneous Coronary Interventions (Revision of the 1993 PTCA Guidelines) Executive Summary
,”
J. Am. Coll. Cardiol.
,
37
(
8
), pp.
2215
2239
.http://www.onlinejacc.org/content/accj/37/8/2239.full.pdf
3.
El-Khalili
,
N. H.
,
1999
, “
Surgical Training on the World Wide Web
,” Ph.D. dissertation, The University of Leeds,
Leeds, UK
.
4.
Lanzer
,
P.
, ed.,
2012
,
Catheter-Based Cardiovascular Interventions: A Knowledge-Based Approach
,
Springer Science and Business Media
,
London
, pp.
469
471
.
5.
Erglis
,
I.
,
Narbute
,
D.
,
Sondore
,
A.
,
Grave
,
S.
, and
Jegere
,
2010
, “
Tools and Techniques: Coronary Guidewires
,”
EuroIntervention
,
6
,
1
8
.
6.
Tóth
,
G.G.
,
Yamane
,
M.
, and
Heyndrickx
,
G. R.
,
2014
, “
How to Select a Guidewire: Technical Features and Key Characteristics
,”
Heart
,
101
(
8
), pp.
645
652
.
7.
Craig
,
W.
,
2013
, “
Guidewire Selection for Peripheral Vascular Interventions
,”
Endovascular Today
,
5
, pp.
80
83
.
8.
Colombo
,
A.
,
Babic
,
R.
, and
Corbett
,
S.
,
2007
, “
Coronary Guidewires
,”
Problem Oriented Approaches in Interventional Cardiology
,
CRC press
,
Boca Raton, FL
, Chap. 2.
9.
Ramanath
,
V. S.
, and
Thompson
,
C. A.
,
2014
, “
Guidewires and Angioplasty Balloons: The Primer
,”
Textbook of Cardiovascular Intervention
,
Springer
,
London
, pp.
91
98
.
10.
Ellis
,
S. G.
, and
Holmes
,
D. R.
,
2005
,
Strategic Approaches in Coronary Intervention
,
3rd ed.
,
Philadelphia, PA
, pp.
91
100
.
11.
Schneider
,
P. A.
,
2008
,
Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery
,
3rd ed.
,
CRC press
,
Boca Raton, FL
.
12.
von Schmilowski
,
E.
, and
Swanton
,
R. H.
,
2012
,
Essential Angioplasty
,
Wiley
,
Hoboken, NJ
, Chap. 2.
13.
Topaz
,
O.
, ed.,
2015
,
Lasers in Cardiovascular Interventions
,
Springer
,
London
, pp.
8
9
.
14.
Schmidt
,
W.
,
Lanzer
,
P.
,
Behrens
,
P.
,
Topoleski
,
L. D.
, and
Schmitz
,
K. A.
,
2009
, “
Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems
,”
Catheter Cardiovasc. Interventions
,
73
(
3
), pp.
350
360
.
15.
Wunderlich
,
C. B.
,
Schmidt
,
W.
,
Behrens
,
P.
,
Schmitz
,
K.-P.
,
2012
, “
The Effect of Different Guide Wires on the Trackability of Coronary Stent Delivery Systems
,”
Biomed. Eng.
,
57
(
SI-1
), p.
880881
.
16.
Mishra
,
S.
, and
Bahl
,
V. K.
,
2009
, “
Curriculum in Cath Lab: Coronary Hardware—Part II: Guidewire Selection for Coronary Angioplasty
,”
Indian Heart J.
,
61
(
1
), pp.
178
185
.https://www.ncbi.nlm.nih.gov/pubmed/19729695
17.
Sutou
,
Y.
,
Yamauchi
,
K.
,
Suzuki
,
M.
,
Furukawa
,
A.
,
Omori
,
T.
,
Takagi
,
T.
,
Kainuma
,
R.
,
Nishida
,
M.
, and
Ishida
,
K.
,
2006
, “
High Maneuverability Guidewire With Functionally Graded Properties Using New Superelastic Alloys
,”
Minimally Invasive Ther. Allied Technol.
,
15
(
4
), pp.
204
208
.
18.
Meirovitch
,
L.
,
2000
,
Fundamentals of Vibrations
,
Waveland Press
,
Long Grove, IL
, pp.
23
39
.
19.
Pflederer
,
T.
,
Ludwig
,
J.
,
Ropers
,
D.
,
Daniel
,
W. G.
, and
Achenbach
,
S.
,
2006
, “
Measurement of Coronary Artery Bifurcation Angles by Multidetector Computed Tomography
,”
Invest. Radiol.
,
41
(
11
), pp.
793
798
.
20.
Dodge
,
J. T.
, Jr
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.
21.
Clogenson
,
H.
,
2014
, “
MRI-Compatible Endovascular Instruments: Improved Maneuverability During Navigation
,”
Ph.D. thesis
,
Delft University
,
Delft, The Netherlands
.https://repository.tudelft.nl/islandora/object/uuid%3A75b9f6e8-84c0-4b56-bbdf-dda274c09597
22.
Konings
,
M. K.
,
van de Kraats
,
E. B.
,
Alderliesten
,
T.
, and
Niessen
,
W. J.
,
2003
, “
Analytical Guide Wire Motion Algorithm for Simulation of Endovascular Interventions
,”
Med. Biol. Eng. Comput.
,
41
(
6
), pp.
689
700
.
23.
3D Systems,
2017
, “
Easily Create High-Definition, Precise Plastic Functional Prototypes and End-Use Parts
,”
Sydney, Australia
, Accessed Jan. 25, 2017, http://ja.3dsystems.com/sites/www.3dsystems.com/files/projet_3500_plastic_0115_usen_web.pdf
24.
Guilloux
,
V.
,
Haigron
,
P.
,
Goksu
,
C.
,
Kulik
,
C.
, and
Lucas
,
A.
,
2006
, “
Simulation of Guidewire Navigation in Complex Vascular Structures
,”
SPIE
Paper No. 614107.
25.
Rosen
,
J. M.
,
Soltanian
,
H.
,
Redett
,
R. J.
, and
Laub
,
D. R.
,
1996
, “
Evolution of Virtual Reality [Medicine]
,”
IEEE Eng. Med. Biol. Mag.
,
15
(
2
), pp.
16
22
.
26.
Ikuta
,
K.
,
Iritani
,
K.
,
Fukuyama
,
J.
, and
Takeichi
,
M.
,
2000
, “
Portable Virtual Endoscope System With Force and Visual Display for Insertion Training
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Berlin, Germany
, Oct. 11, p.
720726
.
27.
Kukuk
,
M.
,
2002
, “
A Model-Based Approach to Intraoperative Guidance of Flexible Endoscopy
,”
Ph.D. thesis
,
Dortmund University
, Princeton, NJ.https://eldorado.tu-dortmund.de/bitstream/2003/2571/1/kukukunt.pdf
28.
Seo
,
J.-H.
,
Jung
,
I.-H.
,
Park
,
T.-W.
, and
Chai
,
J.-B.
,
2005
, “
Dynamic Analysis of a Multibody System Including a Very Flexible Beam Element
,”
JSME Int. J., Ser. C
,
48
(
2
), pp.
224
233
.
29.
Alderliesten
,
T.
,
2004
, “
Simulation of Minimally-Invasive Vascular Interventions for Training Purposes
,” Ph.D. thesis, Utrecht University, Utrecht, The Netherlands.
30.
Tang
,
W.
,
Wan
,
T. R.
,
Gould
,
D. A.
,
How
,
T.
, and
John
,
N. W.
,
2012
, “
A Stable and Real-Time Nonlinear Elastic Approach to Simulating Guidewire and Catheter Insertions Based on Cosserat Rod
,”
IEEE Trans. Biomed. Eng.
,
59
(
8
), pp.
2211
2218
.
31.
Mi
,
S.-H.
,
Hou
,
Z.-G.
,
Yang
,
F.
,
Xie
,
X.-L.
, and
Bian
,
G.-B.
,
2013
, “
A Multi-Body Mass-Spring Model for Virtual Reality Training Simulators Based on a Robotic Guide Wire Operating System
,”
IEEE International Conference on Robotics and Biomimetics
(ROBIO)
, Shenzhen, China, Dec. 12–14, pp.
2031
2036
.
32.
Wang
,
Y. P.
,
Chui
,
C. K.
,
Cai
,
Y. Y.
, and
Mak
,
K. H.
,
1997
, “
Topology Supported Finite Element Method Analysis of Catheter Guidewire Navigation in Reconstructed Coronary Arteries
,”
IEEE Comput. Cardiol.
,
24
, pp.
529
532
.
33.
Wang
,
Y.
,
Chui
,
C.
,
Lim
,
H.
,
Cai
,
Y.
, and
Mak
,
K.
,
1998
, “
Real-Time Interactive Simulator for Percutaneous Coronary Revascularization Procedures
,”
Comput. Aided Surg.
,
3
(
5
), p.
211
.
34.
Li
,
Z.
,
Chui
,
C.-K.
,
Anderson
,
J. H.
,
Chen
,
X.
,
Ma
,
X.
,
Hua
,
W.
,
Peng
,
Q.
,
Cai
,
Y.
,
Wang
,
Y.
, and
Nowinski
,
W. L.
,
2001
, “
Computer Environment for Interventional Neuroradiology Procedures Zirui
,”
Simul. Gaming
,
32
(
3
), pp.
404
419
.
35.
Schafer
,
S.
,
Singh
,
V.
,
Noel
,
P. B.
,
Walczak
,
A. M.
,
Xu
,
J.
, and
Hoffmann
,
K. R.
,
2009
, “
Real-Time Endovascular Guidewire Position Simulation Using Shortest Path Algorithms
,”
Int. J. Comput. Assisted Radiol. Surg.
,
4
(
6
), pp.
597
608
.
36.
Khatait
,
J.
,
2013
, “
Motion and Force Transmission of a Flexible Instrument Inside a Curved Endoscope
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
37.
Burgner-Kahrs
,
J.
,
Caleb Rucker
,
D.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
38.
Korner
,
O.
, and
Manner
,
R.
,
2003
, “
Implementation of a Haptic Interface for a Virtual Reality Simulator for Flexible Endoscopy
,”
11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
(
HAPTICS
2003),
Loss Angeles, CA
, Mar. 22, pp.
278
284
.
39.
Wei
,
P.
,
Feng
,
Z.-Q.
,
Xie
,
X.-L.
,
Bian
,
G.-B.
, and
Hou
,
Z.-G.
,
2014
, “
FEM-Based Guide Wire Simulation and Interaction for a Minimally Invasive Vascular Surgery Training System
,”
11th World Congress on Intelligent Control and Automation
(
WCICA
),
Shenyang, China
, June 29–July 4, pp.
964
969
.
40.
Schröder
,
J.
,
1993
, “
The Mechanical Properties of Guidewires—Part III: Sliding Friction
,”
Cardiovasc. Interventional Radiol.
,
16
(
2
), pp.
93
97
.
41.
Valembois
,
R. E.
,
Fisette
,
P.
, and
Samin
,
J.-C.
,
1997
, “
Comparison of Various Techniques for Modelling Flexible Beams in Multibody Dynamics
,”
Nonlinear Dyn.
,
12
(
4
), pp.
367
397
.
42.
de Jalon
,
J. G.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
,
New-York
, p.
440
.
43.
Takashima
,
K.
,
Tsuzuki
,
S.
,
Ooike
,
A.
,
Yoshinaka
,
K.
,
Yu
,
K.
,
Ohta
,
M.
, and
Mori
,
K.
,
2014
, “
Numerical Analysis and Experimental Observation of Guidewire Motion in a Blood Vasculature Model
,”
Med. Eng. Phys.
,
36
(
12
), pp.
1672
1683
.
44.
Stewart
,
D. E.
,
2000
, “
Rigid-Body Dynamics With Friction and Impact
,”
Soc. Ind. Appl. Math.
,
42
(
1
), p.
339
.
45.
Amirouche
,
F.
,
2007
,
Fundamentals of Multibody Dynamics: Theory and Applications
,
Springer Science & Business Media
,
London
.
46.
Fritzkowski
,
P.
, and
Kaminski
,
H.
,
2011
, “
A Discrete Model of a Rope With Bending Stiffness or Viscous Damping
,”
Acta Mech. Sin.
,
27
(
1
), pp.
108
113
.
You do not currently have access to this content.