Abstract

Ultrasound guidance is used for a variety of surgical needle insertion procedures, but there is currently no standard for the teaching of ultrasound skills. Recently, computer ultrasound simulation has been introduced as an alternative teaching method to traditional manikin and cadaver training because of its ability to provide diverse scenario training, quantitative feedback, and objective assessment. Current computer ultrasound training simulation is limited in its ability to image tissue deformation caused by needle insertions, even though tissue deformation identification is a critical skill in performing an ultrasound-guided needle insertion. To fill this need for improved simulation, a novel method of simulating ultrasound tissue–needle deformation is proposed and evaluated. First, a cadaver study is conducted to obtain ultrasound video of a peripheral nerve block. Then, optical flow analysis is conducted on this video to characterize the tissue movement due to the needle insertion. Tissue movement is characterized into three zones of motion: tissue near the needle being pulled, and zones above and below the needle where the tissue rolls. The rolling zones were centered 1.34 mm above and below the needle and 4.53 mm behind the needle. Using this characterization, a vector field is generated mimicking these zones. This vector field is then applied to an ultrasound image using inverse mapping to simulate tissue movement. The resulting simulation can be processed at 3.1 frames per second. This methodology can be applied through future optimized graphical processing to allow for accurate real time needle tissue simulation.

References

References
1.
Barrington
,
M. J.
, and
Kluger
,
R.
,
2013
, “
Ultrasound Guidance Reduces the Risk of Local Anesthetic Systemic Toxicity Following Peripheral Nerve Blockade
,”
Reg. Anesth. Pain Med.
,
38
(
4
), pp.
289
297
.
2.
Piacherski
,
V.
,
Marochkov
,
A.
,
Brukhnou
,
A.
, and
Kokhan
,
Z.
,
2012
, “
Comparison of Three Methods of Regional Anesthesia of Peripheral Nerves and Plexuses
,”
Open J. Anesthesiol.
,
2
(
5
), p.
7
.
3.
Marhofer
,
P.
,
Greher
,
M.
, and
Kapral
,
S.
,
2005
, “
Ultrasound Guidance in Regional Anaesthesia
,”
Br. J. Anesth.
,
94
(
1
), pp.
7
17
.
4.
Abrahams
,
M. S.
,
Aziz
,
M. F.
,
Fu
,
R. F.
, and
Horn
,
J. L.
,
2009
, “
Ultrasound Guidance Compared With Electrical Neurostimulation for Peripheral Nerve Block: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
,”
Br. J. Anesth.
,
102
(
3
), pp.
408
417
.
5.
Randolph
,
A. G.
,
Cook
,
D. J.
,
Gonzales
,
C. A.
, and
Pribble
,
C. G.
,
1996
, “
Ultrasound Guidance for Placement of Central Venous Catheters: A Meta-Analysis of the Literature
,”
Crit. Care Med.
,
24
(
12
), pp.
2053
2058
.
6.
Froehlich
,
C. D.
,
Rigby
,
M. R.
,
Rosenberg
,
E. S.
,
Li
,
R. S.
,
Roerig
,
P. L. J.
,
Easley
,
K. A.
, and
Stockwell
,
J. A.
,
2009
, “
Ultrasound-Guided Central Venous Catheter Placement Decreases Complications and Decreases Placement Attempts Compared With the Landmark Technique in Patients in a Pediatric Intensive Care Unit
,”
Crit. Care Med.
,
37
(
3
), pp.
1090
1096
.
7.
Karakitsos
,
D.
,
Labropoulos
,
N.
,
De Groot
,
E.
,
Patrianakos
,
A. P.
,
Kouraklis
,
G.
,
Poularas
,
J.
,
Samonis
,
G.
,
Tsoutsos
,
D. A.
,
Konstadoulakis
,
M. M.
, and
Karabinis
,
A.
,
2006
, “
Real-Time Ultrasound-Guided Catheterisation of the Internal Jugular Vein: A Prospective Comparison With the Landmark Technique in Critical Care Patients
,”
Crit. Care
,
10
(
6
), p.
R162
.
8.
Brass
,
P.
,
Hellmich
,
M.
,
Kolodziej
,
L.
,
Schick
,
G.
, and
Smith
,
A. F.
,
2015
, “
Ultrasound Guidance Versus Anatomical Landmarks for Internal Jugular Vein Catheterization
,”
Cochrane Database Syst. Rev.
,
1
, p.
CD006962
.
9.
Mercaldi
,
C. J.
, and
Lanes
,
S. F.
,
2013
, “
Ultrasound Guidance Decreases Complications and Improves the Cost of Care Among Patients Undergoing Thoracentesis and Paracentesis
,”
Chest
,
143
(
2
), pp.
532
538
.
10.
Graham
,
A. S.
,
Ozment
,
C.
,
Tegtmeyer
,
K.
,
Lai
,
S.
, and
Braner
,
D. A. V.
,
2007
, “
Central Venous Catheterization
,”
N. Engl. J. Med.
,
356
(
21
), p.
e21
.
11.
McGee
,
D. C.
, and
Gould
,
M. K.
,
2003
, “
Current Concepts—Preventing Complications of Central Venous Catheterization
,”
N. Engl. J. Med.
,
348
(
12
), pp.
1123
1133
.
12.
Sznajder
,
J.
,
Zveibil
,
F. R.
,
Bitterman
,
H.
,
Weiner
,
P.
, and
Bursztein
,
S.
,
1986
, “
Central Vein Catheterization: Failure and Complication Rates by Three Percutaneous Approaches
,”
Arch. Intern. Med.
,
146
(
2
), pp.
259
261
.
13.
Ruesch
,
S.
,
Walder
,
B.
, and
Tramer
,
M. R.
,
2002
, “
Complications of Central Venous Catheters: Internal Jugular Versus Subclavian Access—A Systematic Review
,”
Crit. Care Med.
,
30
(
2
), pp.
454
460
.
14.
Domino
,
K. B.
,
Bowdle
,
A.
,
Posner
,
K. L.
,
Spitellie
,
P. H.
,
Lee
,
L. A.
, and
Cheney
,
F. W.
,
2004
, “
Injuries and Liability Related to Central Vascular Catheters: A Closed Claims Analysis
,”
Anesthesiology
,
100
(
6
), pp.
1411
1418
.
15.
Mahmood
,
F.
,
Matyal
,
R.
,
Skubas
,
N.
,
Montealegre-Gallegos
,
M.
,
Swaminathan
,
M.
,
Denault
,
A.
,
Sniecinski
,
R.
,
Mitchell
,
J. D.
,
Taylor
,
M.
,
Haskins
,
S.
,
Shahul
,
S.
,
Oren-Grinberg
,
A.
,
Wouters
,
P.
,
Shook
,
D.
, and
Reeves
,
S. T.
,
2016
, “
Perioperative Ultrasound Training in Anesthesiology: A Call to Action
,”
Anesth. Analg.
,
122
(
6
), pp.
1794
1804
.
16.
Gogalniceanu
,
P.
,
Sheena
,
Y.
,
Kashef
,
E.
,
Purkayastha
,
S.
,
Darzi
,
A.
, and
Paraskeva
,
P.
,
2010
, “
Is Basic Emergency Ultrasound Training Feasible as Part of Standard Undergraduate Medical Education?
,”
J. Surg. Educ.
,
67
(
3
), pp.
152
156
.
17.
Rao
,
S.
,
van Holsbeeck
,
L.
,
Musial
,
J. L.
,
Parker
,
A.
,
Bouffard
,
J. A.
,
Bridge
,
P.
,
Jackson
,
M.
, and
Dulchavsky
,
S. A.
,
2008
, “
A Pilot Study of Comprehensive Ultrasound Education at the Wayne State University School of Medicine—A Pioneer Year Review
,”
J. Ultrasound Med.
,
27
(
5
), pp.
745
749
.
18.
Feller-Kopman
,
D.
,
2007
, “
Ultrasound-Guided Internal Jugular Access—A Proposed Standardized Approach and Implications for Training and Practice
,”
Chest
,
132
(
1
), pp.
302
309
.
19.
Kunkler
,
K.
,
2006
, “
The Role of Medical Simulation: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
2
(
3
), pp.
203
210
.
20.
Maran
,
N. J.
, and
Glavin
,
R. J.
,
2003
, “
Low- to High-Fidelity Simulation—A Continuum of Medical Education?
,”
Med. Educ.
,
37
(
s1
), pp.
22
28
.
21.
Tsui
,
B.
,
Dillane
,
D.
,
Pillay
,
J.
, and
Walji
,
A.
,
2008
, “
Ultrasound Imaging in Cadavers: Training in Imaging for Regional Blockade at the Trunk
,”
Can. J. Anesth.
,
55
(
2
), p.
105
.
22.
Coles
,
T. R.
,
Meglan
,
D.
, and
John
,
N. W.
,
2011
, “
The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art
,”
IEEE Trans. Haptics
,
4
(
1
), pp.
51
66
.
23.
Duffy
,
A. J.
,
Hogle
,
N. J.
,
McCarthy
,
H.
,
Lew
,
J. I.
,
Egan
,
A.
,
Christos
,
P.
, and
Fowler
,
D. L.
,
2005
, “
Construct Validity for the LAPSIM Laparoscopic Surgical Simulator
,”
Surg. Endosc.
,
19
(
3
), pp.
401
405
.
24.
Coles
,
T. R.
,
John
,
N. W.
,
Gould
,
D.
, and
Caldwell
,
D. G. C.
,
2011
, “
Integrating Haptics With Augmented Reality in a Femoral Palpation and Needle Insertion Training Simulation
,”
IEEE Trans. Haptics
,
4
(
3
), pp.
199
209
.
25.
Pepley
,
D. F.
,
Gordon
,
A. B.
,
Yovanoff
,
M.
,
Mirkin
,
K.
,
Han
,
D.
,
Miller
,
S.
, and
Moore
,
J.
,
2017
, “
Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator
,”
J. Surg. Educ.
,
74
(
6
), pp.
1066
1073
.
26.
Petrinec
,
K.
,
2013
,
Patient-Specific Interactive Ultrasound Image Simulation With Soft-Tissue Deformation
,
Doctor of Philosophy, University of Califorinia Los Angeles
,
Los Angeles, CA
.
27.
Solberg
,
O. V.
,
Lindseth
,
F.
,
Torp
,
H.
,
Blake
,
R. E.
, and
Hernes
,
T. A. N.
,
2007
, “
Freehand 3D Ultrasound Reconstruction Algorithms—A Review
,”
Ultrasound Med. Biol.
,
33
(
7
), pp.
991
1009
.
28.
Reichl
,
T.
,
Passenger
,
J.
,
Acosta
,
O.
, and
Salvado
,
O.
, “
Ultrasound Goes GPU: Real-Time Simulation Using CUDA
,”
SPIE Medical Imaging
, Lake Buena Vista (Orlando Area), FL, Feb. 7–12, p.
10
.
29.
Gjerald
,
S. U.
,
Brekken
,
R.
,
Hergum
,
T.
, and
D'hooge
,
J.
,
2012
, “
Real-Time Ultrasound Simulation Using the GPU
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
5
), pp.
885
892
.
30.
Zhu
,
Y. N.
,
Magee
,
D.
,
Ratnalingam
,
R.
, and
Kessel
,
D.
,
2007
, “
A Training System for Ultrasound-Guided Needle Insertion Procedures
,”
10th International Conference, Brisbane, Australia, Oct. 29–Nov. 2
, p. 566.
31.
Chin
,
K. J.
,
Perlas
,
A.
,
Chan
,
V. W. S.
, and
Brull
,
R.
,
2008
, “
Needle Visualization in Ultrasound-Guided Regional Anesthesia: Challenges and Solutions
,”
Reg. Anesth. Pain Med.
,
33
(
6
), pp.
532
544
.
32.
Delingette
,
H.
,
1998
, “
Toward Realistic Soft-Tissue Modeling in Medical Simulation
,”
Proc. IEEE
,
86
(
3
), pp.
512
523
.
33.
Farnebäck, G.
, 2003, “
Two-Frame Motion Estimation Based on Polynomial Expansion
,”
Lecture Notes in Computer Science
, Vol. 2749, J. Bigun, T. Gustavsson, eds., Springer, Berlin.
You do not currently have access to this content.