Abstract

Foot slip is one of the major causes of falls in human locomotion. Analytical bipedal models provide an insight into the complex slip dynamics and reactive control strategies for slip-induced fall prevention. Most of the existing bipedal dynamics models are built on no foot slip assumption and cannot be used directly for such analysis. We relax the no-slip assumption and present a new bipedal model to capture and predict human walking locomotion under slip. We first validate the proposed slip walking dynamic model by tuning and optimizing the model parameters to match the experimental results. The results demonstrate that the model successfully predicts both the human walking and recovery gaits with slip. Then, we extend the hybrid zero dynamics (HZD) model and properties to capture human walking with slip. We present the closed-form of the HZD for human walking and discuss the transition between the nonslip and slip states through slip recovery control design. The analysis and design are illustrated through human walking experiments. The models and analysis can be further used to design and control wearable robotic assistive devices to prevent slip-and-fall.

References

References
1.
Stevens
,
J. A.
,
Corso
,
P. S.
,
Finkelstein
,
E. A.
, and
Miller
,
T. R.
,
2006
, “
The Costs of Fatal and Non-Fatal Falls Among Older Adults
,”
Inj. Prev.
,
12
(
5
), pp.
290
295
.
2.
Burns
,
E. R.
,
Stevens
,
J. A.
, and
Lee
,
R.
,
2016
, “
The Direct Costs of Fatal and Non-Fatal Falls Among Older Adults–United States
,”
J. Saf. Res.
,
58
, pp.
99
103
.
3.
U.S. Department of Labor, 2016, “Bureau of Labor Statistics
,” U.S. Department of Labor, Washington, DC.
4.
Redfern
,
M. S.
,
Cham
,
R.
,
Gielo-Perczak
,
K.
,
Grönqvist
,
R.
,
Hirvonen
,
M.
,
Lanshammar
,
H.
,
Marpet
,
M.
,
Pai
,
C. Y.
, and
Powers
,
C.
,
2001
, “
Biomechanics of Slips
,”
Ergonomics
,
44
(
13
), pp.
1138
1166
.
5.
Yang
,
F.
, and
Pai
,
Y.-C.
,
2010
, “
Reactive Control and Its Operation Limits in Responding to a Novel Slip in Gait
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3246
3256
.
6.
Patton
,
J.
,
Pai
,
Y.-C.
, and
Lee
,
W. A.
,
1999
, “
Evaluation of a Model That Determines the Stability Limits of Dynamic Balance
,”
Gait Posture
,
9
(
1
), pp.
38
49
.
7.
Mahboobin
,
A.
,
Cham
,
R.
, and
Piazza
,
S. J.
,
2010
, “
The Impact of a Systematic Reduction in Shoe-Floor Friction on Heel Contact Walking Kinematics—A Gait Simulation Approach
,”
J. Biomech.
,
43
(
8
), pp.
1532
1539
.
8.
Dingwell
,
J. B.
, and
Kang
,
H. G.
,
2006
, “
Differences Between Local and Orbital Dynamic Stability During Human Walking
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
586
593
.
9.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
,
Boca Raton, FL
.
10.
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2014
, “
Models, Feedback Control, and Open Problems of 3D Bipedal Robotic Walking
,”
Automatica
,
50
(
8
), pp.
1955
1988
.
11.
Srinivasan
,
S.
,
Raptis
,
I. A.
, and
Westervelt
,
E. R.
,
2008
, “
Low-Dimensional Sagittal Plane Model of Normal Human Walking
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051017
.
12.
Martin
,
A. E.
, and
Schmiedeler
,
J. P.
,
2014
, “
Predicting Human Walking Gaits With a Simple Planar Model
,”
J. Biomech.
,
47
(
6
), pp.
1416
1421
.
13.
Srinivasan
,
S.
,
2007
, “
Low-Dimensional Modeling and Analysis of Human Gait With Application to the Gait of Transtibial Prosthesis Users
,” Ph.D. thesis, Ohio State University, Columbus, OH.
14.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2004
, “
Roll-Over Shapes of Human Locomotor Systems: Effects of Walking Speed
,”
Clin. Biomech.
,
19
(
4
), pp.
407
414
.
15.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.
16.
Chen
,
K.
,
Trkov
,
M.
,
Yi
,
J.
,
Zhang
,
Y.
,
Liu
,
T.
, and
Song
,
D.
,
2015
, “
A Robotic Bipedal Model for Human Walking With Slips
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
6301
6306
.
17.
Chen
,
K.
,
Trkov
,
M.
, and
Yi
,
J.
,
2017
, “
Hybrid Zero Dynamics of Human Biped Walking With Foot Slip
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
2124
2129
.
18.
Grönqvist
,
R.
,
Chang
,
W.-R.
,
Courtney
,
T. K.
,
Leamon
,
T. B.
,
Redfern
,
M. S.
, and
Strandberg
,
L.
,
2001
, “
Measurement of Slipperiness: Fundamental Concept and Definitions
,”
Ergonomics
,
44
(
13
), pp.
1102
1117
.
19.
Kong
,
K.
, and
Tomizuka
,
M.
,
2009
, “
A Gait Monitoring System Based on Air Pressure Sensors Embedded in a Shoe
,”
IEEE/ASME Trans. Mechatronics
,
14
(
3
), pp.
358
370
.
20.
Liu
,
T.
,
Inoue
,
Y.
,
Shibata
,
K.
, and
Shiojima
,
K.
,
2012
, “
A Mobile Force Plate and Three-Dimensional Motion Analysis System for Three-Dimensional Gait Assessment
,”
IEEE Sensors J.
,
12
(
5
), pp.
1461
1467
.
21.
Trkov
,
M.
,
Yi
,
J.
,
Liu
,
T.
, and
Li
,
K.
,
2018
, “
Shoe–Floor Interactions in Human Walking With Slips: Modeling and Experiments
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
031005
.
22.
Zhang
,
Y.
,
Chen
,
K.
,
Yi
,
J.
, and
Liu
,
L.
,
2014
, “
Pose Estimation in Physical Human-Machine Interactions With Application to Bicycle Riding
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
3333
3338
.
23.
Chevallereau
,
C.
,
Djoudi
,
D.
, and
Grizzle
,
J. W.
,
2008
, “
Stable Bipedal Walking With Foot Rotation Through Direct Regulation of the Zero Moment Point
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
390
401
.
24.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
A Control Approach for Actuated Dynamic Walking in Biped Robots
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1292
1303
.
25.
Zhao
,
H.-H.
,
Ma
,
W.-L.
,
Zeagler
,
M. B.
, and
Ames
,
A. D.
,
2014
, “
Human-Inspired Multi-Contact Locomotion With AMBER2
,”
ACM/IEEE International Conference on Cyber-Physical Systems
(
ICCPS
), Berlin, Germany, Apr. 14–17, pp. 199–210.
26.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
, Vol.
3
,
Wiley
,
New York
.
You do not currently have access to this content.