Abstract

Postural stability is important in everyday life as falls can cause severe injuries. Risk of injuries is higher in the elderly whose balance is often impaired. Modeling postural stability and the parameters that govern it is important to understand the balance mechanism and allow for the development of fall prevention strategies. Several mathematical models have been proposed to represent postural stability of bipeds. These models differ on the number of degrees-of-freedom (DOF) of the skeletal structure, force generation function for the muscle models, and capability to change their behavior as a function of the task. This work proposes a nonlinear model that captures fall recovery using a hip–ankle strategy. The muscle actuation is modeled as a third-order Poynting–Thomson's (PT) mechanical system where muscles and tendons are represented as lumped parameters actuating the aforementioned joints. Both a regression technique and a Kalman Filter (KF) are used to estimate the muscle–tendon parameters of the model. With a good model, the direct estimation of these parameters would allow clinicians to improve postural stability in the elderly, monitor the deterioration of the physical condition in individuals affected by neuro-degenerative diseases, and develop rehabilitation appropriate processes.

References

References
1.
Tsuji
,
T.
,
Morasso
,
P. G.
,
Goto
,
K.
, and
Ito
,
K.
,
1995
, “
Human Hand Impedance Characteristics During Maintained Posture
,”
Biol. Cybern.
,
72
(
6
), pp.
475
485
.
2.
Kistemaker
,
D. A.
, and
Rozendaal
,
L. A.
,
2011
, “
In Vivo Dynamics of the Musculoskeletal System Cannot Be Adequately Described Using a Stiffness-Damping-Inertia Model
,”
PLoS One
,
6
(
5
), p.
e19568
.
3.
Morasso
,
P. G.
, and
Sanguineti
,
V.
,
2002
, “
Ankle Muscle Stiffness Alone Cannot Stabilize Balance During Quiet Standing
,”
J. Neurophysiol.
,
88
(
4
), pp.
2157
2162
.
4.
Chavez-Romero
,
R.
,
Cardenas
,
A.
,
Maya
,
M.
,
Vernaza
,
K. M.
, and
Piovesan
,
D.
,
2014
, “
Experimental Validation of Vision-Based System for the Characterization of Human Standing
,”
Latin American Congress of Automatic Control
(
IFAC-CLCA
), Cancún, México, Oct. 14–17, pp. 301–306.https://www.researchgate.net/publication/269690393_Experimental_Validation_of_Vision-Based_System_for_the_Characterization_of_Human_Standing
5.
de Gooijer-van de Groep
,
K. L.
,
de Vlugt
,
E.
,
de Groot
,
J. H.
,
van der Heijden-Maessen
,
H. C. M.
,
Wielheesen
,
D. H. M.
,
van Wijlen-Hempel
,
R. S.
,
Arendzen
,
J. H.
, and
Meskers
,
C. G. M.
,
2013
, “
Differentiation Between Non-Neural and Neural Contributors to Ankle Joint Stiffness in Cerebral Palsy
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
81
.
6.
Chavez-Romero
,
R.
,
Cardenas
,
A.
,
Rendon-Mancha
,
J. M.
,
Vernaza
,
K. M.
, and
Piovesan
,
D.
,
2015
, “
Inexpensive Vision-Based System for the Direct Measurement of Ankle Stiffness During Quiet Standing
,”
ASME J. Med. Devices
,
9
(
4
), p.
041011
.
7.
Segura
,
M. E.
,
Coronado
,
E.
,
Maya
,
M.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2016
, “
Analysis of Recoverable Falls Via Microsoft Kinect: Identification of Third-Order Ankle Dynamics
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
9
), p.
091006
.
8.
Segura
,
M. E.
,
Coronado
,
E.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2015
, “
Time-Based Identification of Human Ankle Impedance Via Microsoft Kinect
,”
IEEE Signal Processing in Medicine and Biology Symposium
(
SPMB
), Philadelphia, PA, Dec. 12, pp.
1
5
.
9.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2012
, “
Measuring Multi-Joint Stiffness During Single Movements: Numerical Validation of a Novel Time-Frequency Approach
,”
PloS One
,
7
(
3
), p.
e33086
.
10.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2013
, “
Experimental Measure of Arm Stiffness During Single Reaching Movements With a Time-Frequency Analysis
,”
J. Neurophysiol.
,
110
(
10
), pp.
2484
2496
.
11.
Piovesan
,
D.
,
Pierobon
,
A.
, and
Mussa Ivaldi
,
F. A.
,
2013
, “
Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101010
.
12.
Loram
,
I. D.
, and
Lakie
,
M.
,
2002
, “
Direct Measurement of Human Ankle Stiffness During Quiet Standing: The Intrinsic Mechanical Stiffness Is Insufficient for Stability
,”
J. Physiol.
,
545
(
3
), pp.
1041
1053
.
13.
Bortolami
,
S. B.
,
DiZio
,
P.
,
Rabin
,
E.
, and
Lackner
,
J.
,
2003
, “
Analysis of Human Postural Responses to Recoverable Falls
,”
Exp. Brain Res.
,
151
(
3
), pp.
387
404
.
14.
Roberts
,
T. J.
, and
Azizi
,
E.
,
2011
, “
Flexible Mechanisms: The Diverse Roles of Biological Springs in Vertebrate Movement
,”
J. Exp. Biol.
,
214
(
3
), pp.
353
361
.
15.
Coronado
,
L. E.
,
Chavez-Romero
,
R.
,
Maya
,
M.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2015
, “
Combining Genetic Algorithms and Extended Kalman Filter to Estimate Ankle's Muscle-Tendon Parameters
,”
ASME
Paper No. DSCC2015-9781.
16.
Caruntu
,
D. I.
, and
Hefzy
,
M. S.
,
2004
, “
3-D Anatomically Based Dynamic Modeling of the Human Knee to Include Tibio-Femoral and Patello-Femoral Joints
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
44
53
.
17.
Caruntu
,
D. I.
,
Moreno
,
R.
, and
Freeman
,
R.
,
2017
, “
Knee Muscle and Ligament Forces During Drop Landing Exercise
,”
ASME
Paper No. IMECE2017-70982.
18.
Salinas
,
J. M.
, and
Caruntu
,
D. I.
,
2018
, “
2-D Inverse Dynamics Knee Model: Aligning Anatomical Knee Model With Knee Extension Kinematic Data Using Ligament Forces
,”
ASME
Paper No. DETC2018-85386.
19.
Piovesan
,
D.
,
Kennett
,
C.
,
Chavez-Romero
,
R.
,
Panza
,
M. J.
, and
Càrdenas
,
A.
,
2015
, “
Stiffness Boundary Conditions for Critical Damping in Balance Recovery
,”
ASME
Paper No. IMECE2015-50564.
20.
Meirovitch
,
L.
,
2010
,
Methods of Analytical Dynamics
, Wiley, Hoboken, NJ.
21.
Ogata
,
K.
,
1998
,
System Dynamics
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Khalil
,
W.
, and
Dombre
,
E.
,
2004
,
Modeling, Identification & Control of Robots
,
Kogan Page Science
,
London
.
23.
Mooring
,
B. W.
,
Roth
,
Z. S.
, and
Driels
,
M. R.
,
1991
,
Fundamentals of Manipulator Calibration
,
Wiley
,
New York
.
24.
Penrose
,
R.
,
1955
, “
A Generalized Inverse for Matrices
,”
Math. Proc. Cambridge Philos. Soc.
,
51
(
3
), pp.
406
413
.
25.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley
, Hoboken, NJ.
26.
Charmant
,
J.
,
2018
, “Kinovea Version 0.8.15,” Bordeaux, France.
27.
El-Raheem
,
R. M. A.
,
Kamel
,
R. M.
, and
Ali
,
M. F.
,
2015
, “
Reliability of Using Kinovea Program in Measuring Dominant Wrist Joint Range of Motion
,”
Trends Appl. Sci. Res.
,
10
(
4
), pp. 224–230.
28.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
, Hoboken, NJ.
29.
Lamontagne
,
A.
,
Malouin
,
F.
, and
Richards
,
C. L.
,
2000
, “
Contribution of Passive Stiffness to Ankle Plantarflexor Moment During Gait After Stroke
,”
Arch. Phys. Med. Rehabil.
,
81
(
3
), pp.
351
358
.
30.
Marusiak
,
J.
,
Kisiel-Sajewicz
,
K.
,
Jaskólska
,
A.
, and
Jaskólski
,
A.
,
2010
, “
Higher Muscle Passive Stiffness in Parkinson's Disease Patients Than in Controls Measured by Myotonometry
,”
Arch. Phys. Med. Rehabil.
,
91
(
5
), pp.
800
802
.
31.
Sinkjær
,
T.
,
Andersen
,
J. B.
,
Nielsen
,
J. F.
, and
Nielsen
,
J.
,
1996
, “
Impaired Stretch Reflex and Joint Torque Modulation During Spastic Gait in Multiple Sclerosis Patients
,”
J. Neurol.
,
243
(
8
), pp.
566
574
.
32.
Schmitz
,
A.
, and
Piovesan
,
D.
,
2016
, “
Development of an Open-Source, Discrete Element Knee Model
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2056
2067
.
33.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Acosta
,
A. M.
,
1999
, “
Multiple-Input, Multiple-Output System Identification for Characterization of Limb Stiffness Dynamics
,”
Biol. Cybern.
,
80
(
5
), pp.
327
337
.
34.
Mirbagheri
,
M.
,
Barbeau
,
H.
, and
Kearney
,
R.
,
2000
, “
Intrinsic and Reflex Contributions to Human Ankle Stiffness: Variation With Activation Level and Position
,”
Exp. Brain Res.
,
135
(
4
), pp.
423
436
.
35.
Jalaleddini
,
K.
,
Golkar
,
M. A.
, and
Kearney
,
R. E.
,
2017
, “
Measurement of Dynamic Joint Stiffness From Multiple Short Data Segments
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
7
), pp.
925
934
.
You do not currently have access to this content.