Identification of aircraft flight dynamic modes has been implemented by adopting highly nonlinear flight test data. This paper presents a new algorithm for identification of the flight dynamic modes based on Hilbert–Huang transform (HHT) due to its superior potential capabilities in nonlinear and nonstationary signal analysis. Empirical mode decomposition and ensemble empirical mode decomposition (EEMD) are the two common methods that apply the HHT transform for decomposition of the complex signals into instantaneous mode frequencies; however, experimentally, the EMD faces the problem of “mode mixing,” and EEMD faces with the signal precise reconstruction, which leads to imprecise results in the estimation of flight dynamic modes. In order to overcome (handle) this deficiency, an improved EEMD (IEEMD) algorithm for processing of the complex signals that originate from flight data record was introduced. This algorithm disturbing the original signal using white Gaussian noise, IEEMD, is capable of making a precise reconstruction of the original signal. The second improvement is that IEEMD performs signal decomposition with fewer number of iterations and less complexity order rather than EEMD. This algorithm has been applied to aircraft spin maneuvers flight test data. The results show that implication of IEEMD algorithm on the test data obtained more precise signal extractions with fewer iterations in comparison to EEMD method. The signal is reconstructed by summing the flight modes with more accuracy respect to the EEMD. The IEEMD requires a smaller ensemble size, which results in saving of a significant computational cost.

References

References
1.
Roskam
,
J.
,
1995
,
Airplane Flight Dynamics and Automatic Flight Control
,
DAR Corporation
,
Lawrence, KS
, pp.
318
372
.
2.
Etkin
,
B.
,
1959
,
Dynamics of Flight—Stability and Control
,
Wiley
,
New York
.
3.
Morelli
,
E. A.
,
2000
, “
Real-Time Parameter Estimation in the Frequency Domain
,”
J. Guid., Control, Dyn.
,
23
(
5
), pp.
812
818
.
4.
Jategaonkar
,
R.
,
Fischenberg
,
D.
, and
Gruenhagen
,
W.
,
2004
, “
Aerodynamic Modeling and System Identification From Flight Data-Recent Applications at DLR
,”
J. Aircr.
,
41
(
4
), pp.
681
691
.
5.
Tischler
,
M. B.
, and
Remple
,
R. K.
,
2006
,
Aircraft and Rotorcraft System Identification
,
American Institute of Aeronautics and Astronautics
,
New York
, pp.
110
156
.
6.
Tayefi
,
M.
,
Roshanian
,
J.
, and
Ghaffari
,
A.
,
2009
, “
On Estimation of Vehicle Linear Model Parameters
,”
Aircr. Eng. Aerosp. Technol.
,
81
(
5
), pp.
432
438
.
7.
Flandrin
,
P.
,
1999
,
Time-Frequency Time-Scale Analysis
,
Academic Press
,
San Diego, CA
, pp.
15
42
.
8.
Grochenig
,
K.
,
2001
,
Foundations of Time-Frequency Analysis
,
Springer
,
New York
, pp.
80
123
.
9.
Mohammadi
,
S. J.
,
Sabzehparvar
,
M.
, and
Karrari
,
M.
,
2010
, “
Aircraft Stability and Control Model Using Wavelet Transform
,”
Proc. Inst. Mech. Eng. Part G
,
224
(
10
), pp.
1107
1117
.
10.
Huang
,
N.
,
Shen
,
E. Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London Ser. A
,
454
(
1971
), pp.
903
995
.
11.
Feldman
,
M.
,
2007
, “
Considering High Harmonics for Identification of Non-Linear Systems by Hilbert Transform
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
943
958
.
12.
Feldman
,
M.
,
2012
, “
Hilbert Transform Methods for Nonparametric Identification of Nonlinear Time Varying Vibration Systems
,”
Mech. Syst. Signal Process.
,
47
(
2
), pp.
66
77
.
13.
Riaz
,
F.
,
Hassan
,
A.
, and
Rehman
,
S.
,
2015
, “
EMD-Based Temporal and Spectral Features for the Classification of EEG Signals Using Supervised Learning
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
1
), pp.
28
35
.
14.
Das
,
A. B.
,
Imamul
,
M.
, and
Bhuiyan
,
H.
,
2016
, “
Discrimination and Classification of Focal and Non-Focal EEG Signals Using Entropy-Based Features in the EMD-DWT Domain
,”
Biomed. Signal Process. Control
,
29
, pp.
11
21
.
15.
Goodarzi
,
H.
, and
Sabzehparvar
,
M.
,
2017
, “
Identifying Flight Modes of Aerial Planting Projectile Using Hilbert-Huang Transformation
,”
Mech. Syst. Signal Process.
,
96
, pp.
333
347
.
16.
Bagherzade
,
S.
, and
Sabzehparvar
,
M.
,
2015
, “
Estimation of Flight Modes With Hilbert-Huang Transform
,”
Aircr. Eng. Aerosp. Technol.
,
87
(
5
), pp.
402
417
.
17.
Bagherzade
,
S.
, and
Sabzehparvar
,
M.
,
2015
, “
A Local and Online Sifting Process for the Empirical Mode Decomposition and Its Application in Aircraft Damage Detection
,”
Mech. Syst. Signal Process.
,
54–55
, pp. 68–83.
18.
Al-Baddai
,
S.
,
Al-Subari
,
K.
,
Lang
,
E.
, and
Ludwig
,
B.
,
2017
, “
Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing
,”
Int. J. Electr. Comput. Eng.
,
11
(
6
), pp.
678
681
.https://waset.org/Publication/optimizing-approach-for-sifting-process-to-solve-a-common-type-of-empirical-mode-decomposition-mode-mixing/10007433
19.
Damaševičius
,
R.
,
Napoli
,
C.
,
Sidekerskienė
,
T.
, and
Woźniak
,
M.
,
2017
, “
IMF Mode Demixing in EMD for Jitter Analysis
,”
J. Comput. Sci.
,
22
, pp. 240–252.
20.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
1
(
1
), pp.
1
41
.
21.
Wu
,
Z.
, and
Huang
,
N. E.
,
2004
, “
A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method
,”
Proc. R. Soc. London, Ser. A
,
460
, pp.
1597
1611
.
22.
Torres
,
M. E.
,
Colominas
,
M. A.
,
Schlotthauer
,
G.
, and
Flandrin
,
P.
,
2011
, “
A Complete Ensemble Empirical Mode Decomposition With Adaptive Nose
,”
IEEE International Conference on Acoustic, Speech and Signal Processing
(
ICASSP
), Prague, Czech Republic, May 22–27, pp.
4144
4149
.http://perso.ens-lyon.fr/patrick.flandrin/0004144.pdf
23.
Yin
,
Y.
,
Ma
,
D.
,
Wu
,
S.
,
Dai
,
E.
,
Zhu
,
Z.
, and
Myneni
,
R. B.
,
2017
, “
Nonlinear Variations of Forest Leaf Area Index Over China During 1982–2010 Based on EEMD Method
,”
Int. J. Biometeorol.
,
61
(
6
), pp.
977
988
.
24.
Tang
,
L.
,
Lv
,
H.
, and
Yu
,
L.
,
2017
, “
An EEMD-Based Multi-Scale Fuzzy Entropy Approach for Complexity Analysis in Clean Energy Markets
,”
Appl. Soft Comput.
,
56
, pp.
124
133
.
25.
Wang
,
C.
,
Zhang
,
H.
,
Fan
,
W.
, and
Ma
,
P.
,
2017
, “
A New Chaotic Time Series Hybrid Prediction Method of Wind Power Based on EEMD-SE and Full-Parameters Continued Fraction
,”
Energy
,
138
, pp.
977
990
.
26.
Wang
,
C.
,
Sha
,
C.
,
Su
,
M.
, and
Hu
,
Y.-K.
,
2017
, “
An Algorithm to Remove Noise From Locomotive Bearing Vibration Signal Based on Self-Adaptive EEMD Filter
,”
J. Cent. South Univ.
,
24
(
2
), pp.
478
488
.
27.
Gong
,
X.
,
Ding
,
L.
, and
Wang
,
H.
,
2017
, “
Gear Fault Diagnosis Using Dual Channel Data Fusion and EEMD Method
,”
Procedia Eng.
,
174
, pp.
918
926
.
28.
Boashash
,
B.
,
2015
,
Time-Frequency Signal Analysis and Processing
,
2nd ed.
,
Academic Press
,
New York
.
29.
Stough
,
H. P.
,
Patton
,
J. R. M.
, and
Sliwa
,
S. M.
, “
Flight Investigation of the Effect of Tail Configuration on Stall, Spin, and Recovery Characteristics of a Low-Wing General Aviation Research Airplane
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA TP-2644
.https://ntrs.nasa.gov/search.jsp?R=19870007382
You do not currently have access to this content.