We consider an extension of the well-known Hamilton–Jacobi–Bellman (HJB) equation for fractional order dynamical systems in which a generalized performance index is considered for the related optimal control problem. Owing to the nonlocality of the fractional order operators, the classical HJB equation, in the usual form, does not hold true for fractional problems. Effectiveness of the proposed technique is illustrated through a numerical example.

References

References
1.
Zou
,
S.
,
Abdelkhalik
,
O.
,
Robinett
,
R.
,
Bacelli
,
G.
, and
Wilson
,
D.
,
2017
, “
Optimal Control of Wave Energy Converters
,”
Renewable Energy
,
103
, pp.
217
225
.
2.
Kolar
,
B.
,
Rams
,
H.
, and
Schlacher
,
K.
,
2017
, “
Time-Optimal Flatness Based Control of a Gantry Crane
,”
Control Eng. Pract.
,
60
, pp.
18
27
.
3.
Donkers
,
M.
,
Schijndel
,
J. V.
,
Heemels
,
W.
, and
Willems
,
F.
,
2017
, “
Optimal Control for Integrated Emission Management in Diesel Engines
,”
Control Eng. Pract.
,
61
, pp.
206
216
.
4.
Titouche
,
S.
,
Spiteri
,
P.
,
Messine
,
F.
, and
Aidene
,
M.
,
2015
, “
Optimal Control of a Large Thermic Process
,”
J. Process Control
,
25
, pp.
50
58
.
5.
Rodrigues
,
F.
,
Silva
,
C. J.
,
Torres
,
D. F. M.
, and
Maurer
,
H.
,
2018
, “
Optimal Control of a Delayed HIV Model
,”
Discrete Contin. Dyn. Syst. Ser. B
,
23
(
1
), pp.
443
458
.
6.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
, “
Theory and Applications of Fractional Differential Equations
,”
North-Holland Mathematics Studies
, Vol.
204
,
Elsevier Science B.V
,
Amsterdam, The Netherlands
.
7.
Podlubny
,
I.
,
1999
, “
Fractional Differential Equations
,”
Mathematics in Science and Engineering
, Vol.
198
,
Academic Press Inc.
,
San Diego, CA
.
8.
Monje
,
C. A.
,
Chen
,
Y.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
, “
Fractional-Order Systems and Controls
,”
Advances in Industrial Control
,
Springer
,
London
.
9.
Sabatier
,
J.
,
Oustaloup
,
A.
,
Garcia Iturricha
,
A.
, and
Lanusse
,
P.
,
2002
, “
CRONE Control: Principles and Extension to Time-Variant Plants With Asymptotically Constant Coefficients
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
363
385
.
10.
Ibrir
,
S.
, and
Bettayeb
,
M.
,
2015
, “
New Sufficient Conditions for Observer-Based Control of Fractional-Order Uncertain Systems
,”
Autom. J. IFAC
,
59
, pp.
216
223
.
11.
Razminia
,
A.
, and
Torres
,
D. F. M.
,
2013
, “
Control of a Novel Chaotic Fractional Order System Using a State Feedback Technique
,”
Mechatronics
,
23
(
7
), pp.
755
763
.
12.
Shukla
,
M. K.
, and
Sharma
,
B. B.
,
2017
, “
Stabilization of a Class of Fractional Order Chaotic Systems Via Backstepping Approach
,”
Chaos Solitons Fractals
,
98
, pp.
56
62
.
13.
Razminia
,
K.
,
Razminia
,
A.
, and
Tenreiro Machado
,
J. A.
,
2014
, “
Analysis of Diffusion Process in Fractured Reservoirs Using Fractional Derivative Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
3161
3170
.
14.
Razminia
,
K.
,
Razminia
,
A.
, and
Baleanu
,
D.
,
2015
, “
Investigation of the Fractional Diffusion Equation Based on Generalized Integral Quadrature Technique
,”
Appl. Math. Model
,
39
(
1
), pp.
86
98
.
15.
Jahanshahi
,
S.
, and
Torres
,
D. F. M.
,
2017
, “
A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems
,”
J. Optim. Theory Appl.
,
174
(
1
), pp.
156
175
.
16.
Dabiri
,
A.
,
Moghaddam
,
B. P.
, and
Tenreiro Machado
,
J. A.
,
2018
, “
Optimal Variable-Order Fractional PID Controllers for Dynamical Systems
,”
J. Comput. Appl. Math.
,
339
, pp.
40
48
.
17.
Baleanu
,
D.
,
Jajarmi
,
A.
,
Bonyah
,
E.
, and
Hajipour
,
M.
,
2018
, “
New Aspects of Poor Nutrition in the Life Cycle Within the Fractional Calculus
,”
Adv. Difference Equ.
,
2018
(230), pp. 1--14.
18.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
A New Fractional Analysis on the Interaction of HIV With CD4+ T-Cells
,”
Chaos Solitons Fractals
,
113
, pp.
221
229
.
19.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
Modified Kawahara Equation Within a Fractional Derivative With Non-Singular Kernel
,”
Therm. Sci.
,
22
(
2
), pp.
789
796
.
20.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
, “
A New Fractional Model for Convective Straight Fins With Temperature-Dependent Thermal Conductivity
,”
Therm. Sci.
, (in Press).
21.
Kumar
,
D.
,
Singh
,
J.
,
Baleanu
,
D.
, and
Sushila
,
2018
, “
Analysis of Regularized Long-Wave Equation Associated With a New Fractional Operator With Mittag-Leffler Type Kernel
,”
Phys. A
,
492
, pp.
155
167
.
22.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
A New Numerical Algorithm for Fractional Fitzhugh-Nagumo Equation Arising in Transmission of Nerve Impulses
,”
Nonlinear Dyn.
,
91
(
1
), pp.
307
317
.
23.
Kumar
,
D.
,
Agarwal
,
R. P.
, and
Singh
,
J.
,
2018
, “
A Modified Numerical Scheme and Convergence Analysis for Fractional Model of Lienard's Equation
,”
J. Comput. Appl. Math.
,
339
, pp.
405
413
.
24.
Ali
,
H. M.
,
Lobo Pereira
,
F.
, and
Gama
,
S. M. A.
,
2016
, “
A New Approach to the Pontryagin Maximum Principle for Nonlinear Fractional Optimal Control Problems
,”
Math. Methods Appl. Sci
,
39
(
13
), pp.
3640
3649
.
25.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
323
337
.
26.
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2009
, “
Calculus of Variations With Fractional Derivatives and Fractional Integrals
,”
Appl. Math. Lett.
,
22
(
12
), pp.
1816
1820
.
27.
Debbouche
,
A.
,
Nieto
,
J. J.
, and
Torres
,
D. F. M.
,
2017
, “
Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type With Nonlocal Nonlinear Fractional Differential Equations
,”
J. Optim. Theory Appl.
,
174
(
1
), pp.
7
31
.
28.
Razminia
,
A.
,
Majd
,
V. J.
, and
Feyz Dizaji
,
A.
,
2012
, “
An Extended Formulation of Calculus of Variations for Incommensurate Fractional Derivatives With Fractional Performance Index
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1263
1284
.
29.
Odzijewicz
,
T.
,
Malinowska
,
A. B.
, and
Torres
,
D. F. M.
,
2012
, “
Generalized Fractional Calculus With Applications to the Calculus of Variations
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3351
3366
.
30.
Razminia
,
A.
,
Baleanu
,
D.
, and
Majd
,
V. J.
,
2013
, “
Conditional Optimization Problems: Fractional Order Case
,”
J. Optim. Theory Appl.
,
156
(
1
), pp.
45
55
.
31.
Jajarmi
,
A.
,
Hajipour
,
M.
,
Mohammadzadeh
,
E.
, and
Baleanu
,
D.
,
2018
, “
A New Approach for the Nonlinear Fractional Optimal Control Problems With External Persistent Disturbances
,”
J. Franklin Inst.
,
355
(
9
), pp.
3938
3967
.
32.
Zaky
,
M. A.
,
2018
, “
A Legendre Collocation Method for Distributed-Order Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
91
(
4
), pp.
2667
2681
.
33.
Dzielinski
,
A.
, and
Czyronis
,
P. M.
,
2014
, “
Dynamic Programming for Fractional Discrete-Time Systems
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
2003
2009
.
34.
Czyronis
,
P. M.
,
2014
, “
Dynamic Programming Problem for Fractional Discrete-Time Dynamic Systems. Quadratic Index of Performance Case
,”
Circuits Syst. Signal Process
,
33
(
7
), pp.
2131
2149
.
35.
Kolokoltsov
,
V. N.
, and
Veretennikova
,
M. A.
,
2014
, “
A Fractional Hamilton Jacobi Bellman Equation for Scaled Limits of Controlled Continuous Time Random Walks
,”
Commun. Appl. Ind. Math.
,
6
(
1
), p.
e–484
.
36.
Li
,
C.
, and
Deng
,
W.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math. Comput.
,
187
(
2
), pp.
777
784
.
37.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
,
2008
, “
On a Numerical Scheme for Solving Differential Equations of Fractional Order
,”
Mech. Res. Commun.
,
35
(
7
), pp.
429
438
.
38.
Kirk
,
D.
,
2004
,
Optimal Control Theory: An Introduction
,
Dover Publications
,
Mineola, NY
.
39.
El-Nabulsi
,
R. A.
,
2005
, “
A Fractional Action-like Variational Approach of Some Classical, Quantum and Geometrical Dynamics
,”
Int. J. Appl. Math.
,
17
(
3
), pp.
299
317
.
40.
El-Nabulsi
,
R. A.
, and
Torres
,
D. F. M.
,
2007
, “
Necessary Optimality Conditions for Fractional Action-like Integrals of Variational Calculus With Riemann-Liouville Derivatives of Order (α, β)
,”
Math. Methods Appl. Sci.
,
30
(
15
), pp.
1931
1939
.
41.
EL-Nabulsi
,
A. R.
,
2009
, “
Fractional Action-like Variational Problems in Holonomic, Non-Holonomic and Semi-Holonomic Constrained and Dissipative Dynamical Systems
,”
Chaos Solitons Fractals
,
42
(
1
), pp.
52
61
.
42.
Rakhshan
,
S. A.
,
Effati
,
S.
, and
Kamyad
,
A. V.
,
2018
, “
Solving a Class of Fractional Optimal Control Problems by the Hamilton-Jacobi-Bellman Equation
,”
J. Vib. Control
,
24
(
9
), pp.
1741
1756
.
43.
Almeida
,
R.
,
Pooseh
,
S.
, and
Torres
,
D. F. M.
,
2015
,
Computational Methods in the Fractional Calculus of Variations
,
Imperial College Press
,
London
.
44.
Yong
,
J.
, and
Zhou
,
X. Y.
,
1999
,
Stochastic Controls
, Vol.
43
(Applications of Mathematics),
Springer-Verlag
,
New York
.
45.
Sun
,
M.
,
1993
, “
Domain Decomposition Algorithms for Solving Hamilton-Jacobi-Bellman Equations
,”
Numer. Funct. Anal. Optim.
,
14
(
1–2
), pp.
145
166
.
46.
Xu
,
H.
,
Sun
,
Z.
, and
Xie
,
S.
,
2011
, “
An Iterative Algorithm for Solving a Kind of Discrete HJB Equation With M-Functions
,”
Appl. Math. Lett.
,
24
(
3
), pp.
279
282
.
47.
Chen
,
G.
, and
Chen
,
G.
,
2011
, “
A Numerical Algorithm Based on a Variational Iterative Approximation for the Discrete Hamilton-Jacobi-Bellman (HJB) Equation
,”
Comput. Math. Appl.
,
61
(
4
), pp.
901
907
.
48.
Zhou
,
S.
, and
Zhan
,
W.
,
2003
, “
A New Domain Decomposition Method for an HJB Equation
,”
J. Comput. Appl. Math.
,
159
(
1
), pp.
195
204
.
You do not currently have access to this content.