A hybrid uncertain parameter model (HUPM) is introduced to predict the luffing angular response (LAR) field of the dual automobile cranes system (DACS) with random and interval parameters. In the model, all random parameters with specified probabilistic distributions comprise a random vector, while all interval parameters with determined bounds comprise an interval vector. A hybrid uncertain LAR equilibrium equation is established, and a novel approach named as hybrid perturbation compound function-based moment method is proposed based on the HUPM. In the hybrid perturbation compound function-based moment method, the expression of LAR is developed according to the random interval perturbation compound function-based method. More, by using the random interval compound function-based moment method and the monotonic technique, the expectations and variances of the bounds for LAR are calculated. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results on different uncertain cases of the DACS demonstrate the feasibility and efficiency of the proposed algorithm. The proposed method is proved to be an effective engineering method to quantify the effects of hybrid uncertain parameters on the LAR of DACS.

References

References
1.
Balachandran
,
B.
,
Li
,
Y.
, and
Fang
,
C.
,
1999
, “
A Mechanical Filter Concept for Passive and Active Control of Nonlinear Oscillations
,”
J. Sound Vib.
,
228
(
3
), pp.
651
682
.
2.
Kaipa
,
K. V.
, and
Balachandran
,
B.
,
2002
, “
Suppression of Crane Load Oscillations Using Shape Controlled Mechanical Filters
,”
J. Vib. Control
,
8
(
2
), pp.
121
134
.
3.
Zi
,
B.
,
Duan
,
B. Y.
,
Du
,
J. L.
, and
Bao
,
H.
,
2008
, “
Dynamic Modeling and Active Control of a Cable-Suspended Parallel Robot
,”
Mechatronics
,
18
(
1
), pp.
1
12
.
4.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W. W.
, and
Xu
,
Q. S.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chin. J. Mech. Eng.
,
31
, p. 66.
5.
Qian
,
S.
,
Zi
,
B.
, and
Ding
,
H.
,
2016
, “
Dynamics and Trajectory Tracking Control of Cooperative Multiple Mobile Cranes
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
89
108
.
6.
Zi
,
B.
,
Lin
,
J.
, and
Qian
,
S.
,
2015
, “
Localization, Obstacle Avoidance Planning and Control of Cooperative Cable Parallel Robots for Multiple Mobile Cranes
,”
Rob. Comput.-Integr. Manuf.
,
34
, pp.
105
123
.
7.
Leban
,
F.
,
Gonzalez
,
J.
, and
Parker
,
G.
,
2015
, “
Inverse Kinematic Control of a Dual Crane System Experiencing Base Motion
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
331
339
.
8.
Fan
,
W.
, and
Zhu
,
W. D.
,
2017
, “
Dynamic Analysis of an Elevator Traveling Cable Using a Singularity Formulation
,”
ASME J. Appl. Mech.
,
84
(4), p.
044050
.http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=2601164
9.
Zhu
,
W. D.
,
Fan
,
W.
,
Mao
,
Y. G.
, and
Ren
,
G. X.
,
2016
, “
Three-Dimensional Dynamic Modeling and Analysis of Moving Elevator Traveling Cables
,”
Proc. Inst. Mech. Eng., Part K
,
231
(
1
), pp.
167
180
.
10.
Yin
,
S. W.
,
Yu
,
D. J.
,
Yin
,
H.
, and
Xia
,
B. Z.
,
2017
, “
A New Evidence-Theory-Based Method for Response Analysis of Acoustic System With Epistemic Uncertainty by Using Jacobi Expansion
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
419
440
.
11.
Pietro
,
T.
,
Seymour
,
M.
,
Luigi
,
P.
,
Pirrotta
,
A.
, and
Kareem
,
A.
,
2016
, “
An Efficient Framework for the Elasto-Plastic Reliability Assessment of Uncertain Wind Excited Systems
,”
Struct. Saf.
,
58
, pp.
69
78
.
12.
Zi
,
B.
, and
Zhou
,
B.
,
2016
, “
A Modified Hybrid Uncertain Analysis Method for Dynamic Response Field of the LSOAAC With Random and Interval Parameters
,”
J. Sound Vib.
,
374
, pp.
111
137
.
13.
Zhou
,
B.
,
Zi
,
B.
, and
Qian
,
S.
,
2017
, “
Dynamics-Based Nonsingular Interval Model and Luffing Angular Response Field Analysis of the DACS With Narrowly Bounded Uncertainty
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2599
2626
.
14.
Armiyoon
,
A. R.
, and
Wu
,
C. Q.
,
2014
, “
A Novel Method to Identify Boundaries of Basins of Attraction in a Dynamical System Using Lyapunov Exponents and Monte Carlo Techniques
,”
Nonlinear Dyn.
,
79
(
1
), pp.
275
293
.
15.
Chamoin
,
L.
,
Oden
,
J. T.
, and
Prudhomme
,
S.
,
2008
, “
A Stochastic Coupling Method for Atomic-to-Continuum Monte-Carlo Simulations
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
43–44
), pp.
3530
3546
.
16.
Xia
,
B. Z.
, and
Yu
,
D. J.
,
2013
, “
Response Probability Analysis of Random Acoustic Field Based on Perturbation Stochastic Method and Change-of-Variable Technique
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051032
.
17.
Wu
,
F.
, and
Zhong
,
W. X.
,
2016
, “
A Modified Stochastic Perturbation Method for Stochastic Hyperbolic heat Conduction Problems
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
739
758
.
18.
Wu
,
J. L.
,
Luo
,
Z.
,
Zhang
,
N.
, and
Zhang
,
Y. Q.
,
2016
, “
Dynamic Computation of Flexible Multibody System With Uncertain Material Properties
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1231
1254
.
19.
Wu
,
J. L.
,
Luo
,
Z.
,
Zhang
,
N.
,
Zhang
,
Y. Q.
, and
Walker
,
P. D.
,
2017
, “
Uncertain Dynamic Analysis for Rigid-Flexible Mechanisms With Random Geometry and Material Properties
,”
Mech. Syst. Signal Process.
,
85
, pp.
487
511
.
20.
Blanchard
,
E. D.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2010
, “
A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061404
.
21.
Lee
,
H.
,
Sandu
,
C.
, and
Holton
,
C.
,
2012
, “
Stochastic Analysis of the Wheel-Rail Contact Friction Using the Polynomial Chaos Theory
,”
ASME J. Tribol.
,
132
(
3
), p.
031601
.http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1469043
22.
Kolansky
,
J.
, and
Sandu
,
C.
,
2015
, “
Enhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parameter Estimation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(2), p. 021012.
23.
Jacquelin
,
E.
,
Adhikari
,
S.
,
Sinou
,
J. J.
, and
Friswell
,
M. I.
,
2015
, “
Polynomial Chaos Expansion in Structural Dynamics: Accelerating the Convergence of the First Two Statistical Moment Sequences
,”
J. Sound Vib.
,
356
, pp.
144
154
.
24.
Sarrouy
,
E.
,
Dessombz
,
O.
, and
Sinou
,
J. J.
,
2013
, “
Piecewise Polynomial Chaos Expansion With an Application to Brake Squeal of a Linear Brake System
,”
J. Sound Vib.
,
332
(
3
), pp.
577
594
.
25.
Seguí
,
B.
,
Faverjon
,
B.
, and
Jacquet-Richardet
,
G.
,
2013
, “
Effects of Random Stiffness Variations in Multistage Rotors Using the Polynomial Chaos Expansion
,”
J. Sound Vib.
,
332
(
18
), pp.
4178
4192
.
26.
Wang
,
C.
,
Qiu
,
Z. P.
, and
Yang
,
Y.
,
2016
, “
Uncertainty Propagation of Heat Conduction Problem With Multiple Random Inputs
,”
Int. J. Heat Mass Transfer
,
99
, pp.
95
101
.
27.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elem. Anal. Des.
,
47
(
1
), pp.
4
16
.
28.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge, UK
.
29.
Xia
,
B. Z.
,
Yu
,
D. J.
, and
Liu
,
J.
,
2013
, “
Interval and Subinterval Perturbation Methods for a Structural-Acoustic System With Interval Parameters
,”
J. Fluids Struct.
,
38
(
3
), pp.
146
163
.
30.
Muscolino
,
G.
, and
Sofi
,
A.
,
2013
, “
Bounds for the Stationary Stochastic Response of Truss Structures With Uncertain-but-Bounded Parameters
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
163
181
.
31.
Wang
,
C.
, and
Qiu
,
Z. P.
,
2015
, “
Hybrid Uncertain Analysis for Steady-State Heat Conduction With Random and Interval Parameters
,”
Int. J. Heat Mass Transfer
,
80
, pp.
319
328
.
32.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2016
, “
Reliability Analysis of Structures With Interval Uncertainties Under Stationary Stochastic Excitations
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
47
69
.
33.
Chowdhury
,
M. S.
,
Song
,
C. M.
,
Gao
,
W.
, and
Wang
,
C.
,
2016
, “
Reliability Analysis of Homogeneous and Bimaterial Cracked Structures by the Scaled Boundary Finite Element Method and a Hybrid Random-Interval Model
,”
Struct. Saf.
,
59
, pp.
53
66
.
34.
Xia
,
B. Z.
,
,
H.
,
Yu
,
D. J.
, and
Jiang
,
C.
,
2015
, “
Reliability-Based Design Optimization of Structural Systems Under Hybrid Probabilistic and Interval Model
,”
Comput. Struct.
,
160
, pp.
126
134
.
35.
Jiang
,
C.
,
Li
,
W. X.
,
Han
,
X.
,
Liu
,
L. X.
, and
Le
,
P. H.
,
2011
, “
Structural Reliability Analysis Based on Random Distributions With Interval Parameters
,”
Comput. Struct.
,
89
(
23–24
), pp.
2292
2302
.
36.
Jiang
,
C.
,
Han
,
X.
,
Li
,
W. X.
,
Liu
,
J.
, and
Zhang
,
Z.
,
2012
, “
A Hybrid Reliability Approach Based on Probability and Interval for Uncertain Structures
,”
ASME J. Mech. Des.
, 143(
3
), p.
031001
.
37.
Gao
,
W.
,
Song
,
C. M.
, and
Tin-Loi
,
F.
,
2010
, “
Probabilistic Interval Analysis for Structures With Uncertainty
,”
Struct. Saf.
,
32
(
3
), pp.
191
199
.
You do not currently have access to this content.