We investigate theoretically and experimentally the two-to-one internal resonance in micromachined arch beams, which are electrothermally tuned and electrostatically driven. By applying an electrothermal voltage across the arch, the ratio between its first two symmetric modes is tuned to two. We model the nonlinear response of the arch beam during the two-to-one internal resonance using the multiple scales perturbation method. The perturbation solution is expanded up to three orders considering the influence of the quadratic nonlinearities, cubic nonlinearities, and the two simultaneous excitations at higher AC voltages. The perturbation solutions are compared to those obtained from a multimode Galerkin procedure and to experimental data based on deliberately fabricated Silicon arch beam. Good agreement is found among the results. Results indicate that the system exhibits different types of bifurcations, such as saddle node and Hopf bifurcations, which can lead to quasi-periodic and potentially chaotic motions.

References

References
1.
Hafiz
,
M. A. A.
,
Kosuru
,
L.
, and
Younis
,
M. I.
,
2016
, “
Microelectromechanical Reprogrammable Logic Device
,”
Nat. Commun.
,
7
, p.
11137
.
2.
Antonio
,
D.
,
Zanette
,
D. H.
, and
López
,
D.
,
2012
, “
Frequency Stabilization in Nonlinear Micromechanical Oscillators
,”
Nat. Commun.
,
3
, p.
806
.
3.
Chen
,
C.
,
Zanette
,
D. H.
,
Czaplewski
,
D. A.
,
Shaw
,
S.
, and
López
,
D.
,
2017
, “
Direct Observation of Coherent Energy Transfer in Nonlinear Micromechanical Oscillators
,”
Nat. Commun.
,
8
, p.
15523
.
4.
Chen
,
L.-Q.
, and
Jiang
,
W.-A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
5.
Lan
,
C.
,
Qin
,
W.
, and
Deng
,
W.
,
2015
, “
Energy Harvesting by Dynamic Unstability and Internal Resonance for Piezoelectric Beam
,”
Appl. Phys. Lett.
,
107
(
9
), p.
093902
.
6.
Al Hafiz
,
M. A.
,
Kosuru
,
L.
,
Hajjaj
,
A. Z.
, and
Younis
,
M. I.
,
2017
, “
Highly Tunable Narrow Bandpass MEMS Filter
,”
IEEE Trans. Electron Devices
,
64
(
8
), pp.
3392
3398
.
7.
Hajjaj
,
A. Z.
,
Hafiz
,
M. A.
, and
Younis
,
M. I.
,
2017
, “
Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters
,”
Sci. Rep.
,
7
, p.
41820
.
8.
Hajjaj
,
A. Z.
,
Alcheikh
,
N.
, and
Younis
,
M. I.
,
2017
, “
The Static and Dynamic Behavior of MEMS Arch Resonators Near Veering and the Impact of Initial Shapes
,”
Int. J. Nonlinear Mech.
,
95
, pp.
277
286
.
9.
Malhotra
,
N.
, and
Namachchivaya
,
N. S.
,
1997
, “
Chaotic Motion of Shallow Arch Structures Under 1:1 Internal Resonance
,”
J. Eng. Mech.
,
123
(
6
), pp.
620
627
.
10.
Tien
,
W.-M.
,
Namachchivaya
,
N. S.
, and
Bajaj
,
A. K.
,
1994
, “
Nonlinear Dynamics of a Shallow Arch Under Periodic Excitation —Part I: 1:2 Internal Resonance
,”
Int. J. Nonlinear Mech.
,
29
(
3
), pp.
349
366
.
11.
El-Bassiouny
,
A.
,
2005
, “
Three-to-One Internal Resonance in the Non Linear Oscillation of Shallow Arch
,”
Phys. Scr.
,
72
(
6
), p.
439
.
12.
Lee
,
C. L.
, and
Perkins
,
N. C.
,
1992
, “
Nonlinear Oscillations of Suspended Cables Containing a Two-to-One Internal Resonance
,”
Nonlinear Dyn.
,
3
(
6
), pp.
465
490
.
13.
Srinil
,
N.
,
Rega
,
G.
, and
Chucheepsakul
,
S.
,
2007
, “
Two-to-One Resonant Multi-Modal Dynamics of Horizontal/Inclined Cables—Part I: Theoretical Formulation and Model Validation
,”
Nonlinear Dyn.
,
48
(
3
), pp.
231
252
.
14.
Öz
,
H. R.
, and
Pakdemirli
,
M.
,
2006
, “
Two-to-One Internal Resonances in a Shallow Curved Beam Resting on an Elastic Foundation
,”
Acta Mech.
,
185
(
3–4
), pp.
245
260
.
15.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2011
, “
Natural Frequencies and Mode Shapes of Initially Curved Carbon Nanotube Resonators Under Electric Excitation
,”
J. Sound Vib.
,
330
(
13
), pp.
3182
3195
.
16.
Chang
,
S.
,
Bajaj
,
A. K.
, and
Krousgrill
,
C. M.
,
1993
, “
Non-Linear Vibrations and Chaos in Harmonically Excited Rectangular Plates With One-to-One Internal Resonance
,”
Nonlinear Dyn.
,
4
(
5
), pp.
433
460
.
17.
Chin
,
C.-M.
, and
Nayfeh
,
A. H.
,
1999
, “
Three-to-One Internal Resonances in Parametrically Excited Hinged-Clamped Beams
,”
Nonlinear Dyn.
,
20
(
2
), pp.
131
158
.
18.
Bi
,
Q.
, and
Dai
,
H.
,
2000
, “
Analysis of Non-Linear Dynamics and Bifurcations of a Shallow Arch Subjected to Periodic Excitation With Internal Resonance
,”
J. Sound Vib.
,
233
(
4
), pp.
553
567
.
19.
Lakrad
,
F.
,
Chtouki
,
A.
, and
Belhaq
,
M.
,
2016
, “
Nonlinear Vibrations of a Shallow Arch Under a Low Frequency and a Resonant Harmonic Excitations
,”
Meccanica
,
51
(
11
), pp.
2577
2587
.
20.
Yi
,
Z.
, and
Stanciulescu
,
I.
,
2016
, “
Nonlinear Normal Modes of a Shallow Arch With Elastic Constraints for Two-to-One Internal Resonances
,”
Nonlinear Dyn.
,
83
(
3
), pp.
1577
1600
.
21.
Yu
,
W.
, and
Chen
,
F.
,
2014
, “
Homoclinic Orbits in a Shallow Arch Subjected to Periodic Excitation
,”
Nonlinear Dyn.
,
78
(
1
), pp.
713
727
.
22.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
23.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2003
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
91
117
.
24.
Daqaq
,
M.
,
Abdel-Rahman
,
E.
, and
Nayfeh
,
A.
,
2008
, “
Towards a Stable Low-Voltage Torsional Microscanner
,”
Microsyst. Technol.
,
14
(
6
), pp.
725
737
.
25.
Daqaq
,
M. F.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2008
, “
Two-to-One Internal Resonance in Microscanners
,”
Nonlinear Dyn.
,
57
(
1–2
), pp.
231
251
.https://doi.org/10.1007/s11071-008-9435-2
26.
Vyas
,
A.
,
Peroulis
,
D.
, and
Bajaj
,
A. K.
,
2009
, “
A Microresonator Design Based on Nonlinear 1:2 Internal Resonance in Flexural Structural Modes
,”
J. Microelectromech. Syst.
,
18
(
3
), pp.
744
762
.
27.
Samanta
,
C.
,
Yasasvi Gangavarapu
,
P.
, and
Naik
,
A.
,
2015
, “
Nonlinear Mode Coupling and Internal Resonances in MoS2 Nanoelectromechanical System
,”
Appl. Phys. Lett.
,
107
(
17
), p.
173110
.
28.
Kambali
,
P. N.
, and
Pandey
,
A. K.
,
2017
, “
Nonlinear Coupling of Transverse Modes of a Fixed–Fixed Microbeam Under Direct and Parametric Excitation
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1271
1294
.
29.
Li
,
L.
,
Zhang
,
Q.
,
Wang
,
W.
, and
Han
,
J.
,
2017
, “
Nonlinear Coupled Vibration of Electrostatically Actuated Clamped–Clamped Microbeams Under Higher-Order Modes Excitation
,”
Nonlinear Dyn.
,
90
(
3
), pp.
1593
1606
.
30.
Ouakad
,
H. M.
,
Sedighi
,
H. M.
, and
Younis
,
M. I.
,
2017
, “
One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051025
.
31.
Sarrafan
,
A.
,
Bahreyni
,
B.
, and
Golnaraghi
,
F.
,
2017
, “
Development and Characterization of an H-Shaped Microresonator Exhibiting 2:1 Internal Resonance
,”
J. Microelectromech. Syst.
,
26
(
5
), pp.
993
1001
.
32.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer Science & Business Media
, New York.
33.
Wolfram Research, Inc.
,
2015
, “
Mathematica
,”
Wolfram Research, Inc.
,
Champaign, IL
.
34.
Nayfeh
,
A. H.
,
2005
, “
Resolving Controversies in the Application of the Method of Multiple Scales and the Generalized Method of Averaging
,”
Nonlinear Dyn.
,
40
(
1
), pp.
61
102
.
35.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
, John Wiley & Sons, Weinheim, Germany.
36.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions: Analytical, Computational and Experimental Methods
,
Wiley
, New York.
37.
Hajjaj
,
A. Z.
,
Alfosail
,
F. K.
, and
Younis
,
M. I.
,
2018
, “
Two-to-One Internal Resonance of MEMS Arch Resonators
,”
Int. J. Nonlinear Mech.
, (in press).
You do not currently have access to this content.