We characterize the complex, heavy-tailed probability density functions (pdfs) describing the response and its local extrema for structural systems subject to random forcing that includes extreme events. Our approach is based on recent probabilistic decomposition-synthesis (PDS) technique (Mohamad, M. A., Cousins, W., and Sapsis, T. P., 2016, “A Probabilistic Decomposition-Synthesis Method for the Quantification of Rare Events Due to Internal Instabilities,” J. Comput. Phys., 322, pp. 288–308), where we decouple rare event regimes from background fluctuations. The result of the analysis has the form of a semi-analytical approximation formula for the pdf of the response (displacement, velocity, and acceleration) and the pdf of the local extrema. For special limiting cases (lightly damped or heavily damped systems), our analysis provides fully analytical approximations. We also demonstrate how the method can be applied to high dimensional structural systems through a two-degrees-of-freedom (TDOF) example system undergoing extreme events due to intermittent forcing. The derived formulas can be evaluated with very small computational cost and are shown to accurately capture the complicated heavy-tailed and asymmetrical features in the probability distribution many standard deviations away from the mean, through comparisons with expensive Monte Carlo simulations.

References

References
1.
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
,
2016
, “
Probabilistic Response and Rare Events in Mathieu's Equation Under Correlated Parametric Excitation
,”
Ocean Eng.
,
120
, pp.
289
297
.
2.
Belenky
,
V. L.
, and
Sevastianov
,
N. B.
,
2007
,
Stability and Safety of Ships: Risk of Capsizing
,
The Society of Naval Architects and Marine Engineers
, Alexandria, VA.
3.
Cousins
,
W.
, and
Sapsis
,
T. P.
,
2016
, “
Reduced Order Precursors of Rare Events in Unidirectional Nonlinear Water Waves
,”
J. Fluid Mech.
,
790
, pp.
368
388
.
4.
Cousins
,
W.
, and
Sapsis
,
T. P.
,
2014
, “
Quantification and Prediction of Extreme Events in a One-Dimensional Nonlinear Dispersive Wave Model
,”
Physica D
,
280–281
, pp.
48
58
.
5.
Riley
,
M. R.
,
Coats
,
T.
,
Haupt
,
K.
, and
Jacobson
,
D.
,
2011
, “
Ride Severity Index a New Approach to Quantifying the Comparison of Acceleration Responses of High-Speed Craft
,” 11th International Conference on Fast Sea Transportation
, Honolulu, HI, Sept. 26–29, pp.
693
699
.
6.
Riley
,
M. R.
, and
Coats
,
T. W.
,
2012
, “
A Simplified Approach for Analyzing Accelerations Induced by Wave-Impacts in High-Speed Planing Craft
,”
Third Chesapeake Power Boat Symposium
, Annapolis, MD, June 15–16, pp.
14
15
.
7.
Abou-Rayan
,
A.
, and
Nayfeh
,
A.
,
1993
, “
Stochastic Response of a Buckled Beam to External and Parametric Random Excitations
,”
AIAA
Paper No. 93-1425-CP.
8.
Lin
,
Y. K.
, and
Cai
,
C. Q.
,
1995
,
Probabilistic Structural Dynamics
,
McGraw-Hill
, New York.
9.
Lin
,
Y. K.
,
1963
, “
Application of Nonstationary Shot Noise in the Study of System Response to a Class of Nonstationary Excitations
,”
ASME J. Appl. Mech.
,
30
(4), pp.
555
558
.
10.
Branstetter
,
L. J.
,
Jeong
,
G. D.
,
Yao
,
J. T.
,
Wen
,
Y.
, and
Lin
,
Y.
,
1988
, “
Mathematical Modelling of Structural Behaviour During Earthquakes
,”
Probab. Eng. Mech.
,
3
(
3
), pp.
130
145
.
11.
Lin
,
Y.
,
1996
, “
Stochastic Stability of Wind-Excited Long-Span Bridges
,”
Probab. Eng. Mech.
,
11
(
4
), pp.
257
261
.
12.
Spence
,
S.
, and
Gioffrè
,
M.
,
2012
, “
Large Scale Reliability-Based Design Optimization of Wind Excited Tall Buildings
,”
Probab. Eng. Mech.
,
28
, pp.
206
215
.
13.
Soong
,
T. T.
, and
Grigoriu
,
M.
,
1993
,
Random Vibration of Mechanical and Structural Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
, p.
14690
.
14.
Sobczyk
,
K.
,
2001
,
Stochastic Differential Equations: With Applications to Physics and Engineering
, Vol.
40
,
Springer
, Berlin.
15.
Sapsis
,
T. P.
, and
Athanassoulis
,
G. A.
,
2008
, “
New Partial Differential Equations Governing the Joint, Response–Excitation, Probability Distributions of Nonlinear Systems, Under General Stochastic Excitation
,”
Probab. Eng. Mech.
,
23
(
2–3
), pp.
289
306
.
16.
Venturi
,
D.
,
Sapsis
,
T. P.
,
Cho
,
H.
, and
Karniadakis
,
G. E.
,
2012
, “
A Computable Evolution Equation for the Joint Response-Excitation Probability Density Function of Stochastic Dynamical Systems
,”
Proc. R. Soc. A
,
468
(
2139
), p.
759
.
17.
Joo
,
H. K.
, and
Sapsis
,
T. P.
,
2016
, “
A Moment-Equation-Copula-Closure Method for Nonlinear Vibrational Systems Subjected to Correlated Noise
,”
Probab. Eng. Mech.
,
46
, pp. 120–132.
18.
Athanassoulis
,
G.
,
Tsantili
,
I.
, and
Kapelonis
,
Z.
,
2016
, “
Beyond the Markovian Assumption: Response-Excitation Probabilistic Solution to Random Nonlinear Differential Equations in the Long Time
,”
Proc. R. Soc. A
,
471
, p.
201505
.
19.
Beran
,
M.
,
1968
,
Statistical Continuum Theories
,
Interscience Publishers
, Geneva, Switzerland.
20.
Wu
,
W. F.
, and
Lin
,
Y. K.
,
1984
, “
Cumulant-Neglect Closure for Non-Linear Oscillators Under Random Parametric and External Excitations
,”
Int. J. Non Linear Mech.
,
19
(
4
), pp.
349
362
.
21.
Athanassoulis
,
G. A.
, and
Gavriliadis
,
P. N.
,
2002
, “
The Truncated Hausdorff Moment Problem Solved by Using Kernel Density Functions
,”
Probab. Eng. Mech.
,
17
(
3
), pp.
273
291
.
22.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
23.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys
,
187
(
1
), pp.
137
167
.
24.
Majda
,
A. J.
, and
Branicki
,
M.
,
2012
, “
Lessons in Uncertainty Quantification for Turbulent Dynamical Systems
,”
Discrete Contin. Dyn. Syst.
,
32
(
9
), pp.
3133
3221
.
25.
Meerschaert
,
M. M.
, 2016,
Fractional Calculus, Anomalous Diffusion, and Probability
,
World Scientific
, Singapore, pp.
265
284
.
26.
Klafter
,
J.
,
Lim
,
S. C.
, and
Metzler
,
R.
, eds., 2016,
Fractional Dynamics
,
World Scientific
, Singapore.
27.
Aban
,
I. B.
,
Meerschaert
,
M. M.
, and
Panorska
,
A. K.
,
2006
, “
Parameter Estimation for the Truncated Pareto Distribution
,”
J. Am. Stat. Assoc.
,
101
(
473
), pp.
270
277
.
28.
Liang
,
Y.
, and
Chen
,
W.
,
2015
, “
A Relative Entropy Method to Measure Non-Exponential Random Data
,”
Phys. Lett. A
,
379
(
3
), pp.
95
99
.
29.
Liang
,
Y.
, and
Chen
,
W.
,
2015
, “
Reliability Analysis for Sluice Gate Anti-Sliding Stability Using Lévy Stable Distributions
,”
Signal Process.
,
107
, pp.
425
432
.
30.
Liang
,
Y.
, and
Chen
,
W.
,
2016
, “
A Regularized Miner's Rule for Fatigue Reliability Analysis With Mittag-Leffler Statistics
,”
Int. J. Damage Mech.
,
25
(
5
), pp.
691
704
.
31.
Vasta
,
M.
,
1995
, “
Exact Stationary Solution for a Class of Non-Linear Systems Driven by a Non-Normal Delta-Correlated Process
,”
Int. J. Non-Linear Mech.
,
30
(
4
), pp.
407
418
.
32.
Köylüoglu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Iwankiewicz
,
R.
,
1995
, “
Response and Reliability of Poisson-Driven Systems by Path Integration
,”
J. Eng. Mech.
,
121
(
1
) pp.
117
130
.
33.
Iwankiewicz
,
R.
, and
Nielsen
,
S. R. K.
,
2000
, “
Solution Techniques for Pulse Problems in Non-Linear Stochastic Dynamics
,”
Probab. Eng. Mech.
,
15
(
1
), pp.
25
36
.
34.
Barone
,
G.
,
Navarra
,
G.
, and
Pirrotta
,
A.
,
2008
, “
Probabilistic Response of Linear Structures Equipped With Nonlinear Damper Devices (PIS Method)
,”
Probab. Eng. Phys.
,
23
(
2–3
), pp.
125
133
.
35.
Zhu
,
W. Q.
,
1988
, “
Stochastic Averaging Methods in Random Vibration
,”
Appl. Mech. Rev.
,
41
(
5
), pp.
189
199
.
36.
Zeng
,
Y.
, and
Zhu
,
W. Q.
,
2011
, “
Stochastic Averaging of Strongly Nonlinear Oscillators Under Poisson White Noise Excitation
,”
IUTAM
Symposium on Nonlinear Stochastic Dynamics and Control, Hangzhou, China, May 10–14, pp.
147
155
.
37.
Masud
,
A.
, and
Bergman
,
L. A.
,
2005
, “
Solution of the Four Dimensional Fokker-Planck Equation: Still a Challenge
,”
ICOSSAR
2005, Rome, Italy, June 19–23, pp.
1911
1916
.http://web.engr.illinois.edu/~amasud/Papers/Masud-Bergman-ICOSSAR-OS0506.pdf
38.
Di Matteo
,
A.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2014
, “
Probabilistic Characterization of Nonlinear Systems Under Poisson White Noise Via Complex Fractional Moments
,”
Nonlinear Dyn.
,
77
(
3
), pp.
729
738
.
39.
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
,
2015
, “
Probabilistic Description of Extreme Events in Intermittently Unstable Systems Excited by Correlated Stochastic Processes
,”
SIAM/ASA J. Uncertain. Quantif.
,
3
(
1
), pp.
709
736
.
40.
Mohamad
,
M. A.
,
Cousins
,
W.
, and
Sapsis
,
T. P.
,
2016
, “
A Probabilistic Decomposition-Synthesis Method for the Quantification of Rare Events Due to Internal Instabilities
,”
J. Comput. Phys.
,
322
, pp.
288
308
.
41.
Joo
,
H. K.
,
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
, “
Extreme Events and Their Optimal Mitigation in Nonlinear Structural Systems Excited by Stochastic Loads: Application to Ocean Engineering Systems
,”
Ocean Eng.
,
142
, pp.
145
160
.
42.
Srirangarajan
,
S.
,
Allen
,
M.
,
Preis
,
A.
,
Iqbal
,
M.
,
Lim
,
H. B.
, and
Whittle
,
A. J.
,
2013
, “
Wavelet-Based Burst Event Detection and Localization in Water Distribution Systems
,”
J. Signal Process. Syst.
,
72
(
1
), pp.
1
16
.
43.
Langley
,
R. S.
,
1986
, “
On Various Definitions of the Envelope of a Random Process
,”
J. Sound Vib.
,
105
(
3
), pp.
503
512
.
44.
Ochi
,
M.,K.
,
1990
,
Applied Probability and Stochastic Processes: In Engineering and Physical Sciences
, Vol.
226
,
Wiley-Interscience
, Hoboken, NJ.
45.
Karadeniz
,
H.
,
2012
,
Stochastic Analysis of Offshore Steel Structures: An Analytical Appraisal
,
Springer Science & Business Media
, London.
You do not currently have access to this content.