In this paper, the analytical solutions of periodic evolutions of the periodically diffused Brusselator are obtained through the generalized harmonic balanced method. Stable and unstable solutions of period-1 and period-2 evolutions in the Brusselator are presented. Stability and bifurcations of the periodic evolution are determined by the eigenvalue analysis, and the corresponding Hopf bifurcations are presented on the analytical bifurcation tree of the periodic motions. Numerical simulations of stable period-1 and period-2 motions of Brusselator are completed. The harmonic amplitude spectra show harmonic effects on periodic motions, and the corresponding accuracy of approximate analytical solutions can be prescribed specifically.

References

References
1.
Prigogine
,
I.
, and
Lefever
,
R.
,
1968
, “
Symmetry Breaking Instabilities in Dissipative Systems—II
,”
J. Chem. Phys.
,
48
(
4
), pp.
1695
1700
.
2.
Lefever
,
R.
, and
Nicolis
,
G.
,
1971
, “
Chemical Instabilities and Sustained Oscillations
,”
J. Theor. Biol.
,
30
(
2
), pp.
267
284
.
3.
Tyson
,
J. J.
,
1973
, “
Some Further Studies of Nonlinear Oscillations in Chemical Systems
,”
J. Chem. Phys.
,
58
(
9
), pp.
3919
3930
.
4.
Tomita
,
K.
,
Kai
,
T.
, and
Hikami
,
F.
,
1977
, “
Entrainment of a Limit Cycle by a Periodic External Excitation
,”
Prog. Theor. Phys.
,
57
(
4
), pp.
1159
1177
.
5.
Gillespie
,
D. T.
,
1977
, “
Exact Stochastic Simulation of Coupled Chemical Reactions With Delays
,”
J. Phys. Chem.
,
81
(
25
), pp.
2340
2361
.
6.
Hao
,
B. L.
, and
Zhang
,
S. Y.
,
1982
, “
Hierarchy of Chaotic Bands
,”
J. Stat. Phys.
,
28
(
4
), pp.
769
792
.
7.
Kuznetsov
,
S. P.
,
Mosekilde
,
E.
,
Dewel
,
G.
, and
Borckmans
,
P.
,
1997
, “
Absolute and Convective Instabilities in a One-Dimensional Brusselator Flow Model
,”
J. Chem. Phys.
,
106
(
18
), pp.
7609
7616
.
8.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2006
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
9.
Davies
,
M. A.
, and
Balachandran
,
B.
,
2000
, “
Impact Dynamics in Milling of Thin-Walled Structures
,”
Nonlinear Dyn.
,
22
(4), pp.
375
392
.
10.
Balachandran
,
B.
,
2003
, “
Dynamics of Elastic Structures Excited by Harmonic and Aharmonic Impactor Motions
,”
J. Vib. Control
,
9
(3–4), pp.
265
279
.
11.
Nakhla
,
M.
, and
Vlach
,
J.
,
1976
, “
A Piecewise Harmonic Balance Technique for Determination of Periodic Response of Nonlinear Systems
,”
IEEE Trans. Circuits Syst.
,
23
(
2
), pp.
85
91
.
12.
Kundert
,
K. S.
, and
Sangiovanni-Vincentelli
,
A.
,
1986
, “
Simulation of Nonlinear Circuits in the Frequency Domain
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
5
(
4
), pp.
521
535
.
13.
Luo
,
A. C. J.
,
2012
,
Continuous Dynamical Systems
,
L&H Scientific Publishing
,
Glen Carbon, IL
.
14.
Luo
,
A. C. J.
, and
Huang
,
J.
,
2012
, “
Approximate Solutions of Periodic Motions in Nonlinear Systems Via a Generalized Harmonic Balance
,”
J. Vib. Control
,
18
(
11
), pp.
1661
1674
.
15.
Luo
,
A. C. J.
, and
Huang
,
J.
,
2013
, “
Analytical Period-3 Motions to Chaos in a Hardening Duffing Oscillator
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1905
1932
.
16.
Luo
,
A. C. J.
,
2014
,
Toward Analytical Chaos in Nonlinear Systems
,
Wiley
,
New York
.
17.
Luo
,
A. C. J.
,
2014
,
Analytical Routes to Chaos in Nonlinear Engineering
,
Wiley
,
New York
.
You do not currently have access to this content.