Piston impacts against the cylinder liner are the most significant sources of mechanical noise in internal combustion (IC) engines. Traditionally, the severity of impacts is reduced through the modification of physical and geometrical characteristics of components in the piston assembly. These methods effectively reduce power losses at certain engine operating conditions. Frictional losses and piston impact noise are inversely proportional. Hence, the reduction in power loss leads to louder piston impact noise. An alternative method that is robust to fluctuations in the engine operating conditions is anticipated to improve the engine's noise, vibration and harshness (NVH) performance, while exacerbation in power loss remains within the limits of conventional methods. The concept of targeted energy transfer (TET) through the use of nonlinear energy sink (NES) is relatively new and its application in automotive powertrains has not been demonstrated yet. In this paper, a TET device is conceptually designed and optimized through a series of parametric studies. The dynamic response and power loss of a piston model equipped with this nonlinear energy sink is investigated. Numerical studies have shown a potential in reducing the severity of impact dynamics by controlling the piston's secondary motion.

References

References
1.
Rahnejat
,
H.
,
2000
, “
Multi-Body Dynamics: Historical Evolution and Application
,”
Proc. Inst. Mech. Eng. Part C
,
214
(
1
), pp.
149
173
.
2.
Ouis
,
D.
,
2001
, “
Annoyance From Road Traffic Noise: A Review
,”
J. Environ. Psychol.
,
21
(
1
), pp.
101
120
.
3.
Gupta
,
S.
,
2002
, “
Elasto-Multi-Body Dynamics of Internal Combustion Engines With Thin Shell Elastohydrodynamic Journal Bearings
,” Ph.D. thesis, Loughborough University, Loughborough, UK.
4.
Kanda
,
H.
,
Okubo
,
M.
, and
Yonezawa
,
T.
,
1990
, “
Analysis of Noise Sources and Their Transfer Paths in Diesel Engines
,”
SAE
Paper No. SAE900014.
5.
Lalor
,
N.
,
Grover
,
E. C.
, and
Priede
,
T.
,
1980
, “
Engine Noise Due to Mechanical Impacts at Pistons and Bearings
,”
SAE
Paper No. 800402.
6.
Kaiser
,
H.
,
Schmilien
,
K.
, and
Spessert
,
B.
,
1988
, “
Acoustical Optimization of the Piston Slap by Combination of Computing and Experiments
,”
SAE
Paper No. 880100.
7.
Edara
,
R.
,
2008
, “
Reciprocating Engine Piston Secondary Motion—Literature Review
,”
SAE
Paper No. 2008-01-1045.
8.
Li
,
D. F.
,
Rohde
,
S. M.
, and
Ezzat
,
H. A.
,
1983
, “
An Automotive Piston Lubrication Model
,”
ASLE Trans.
,
26
(
2
), pp.
151
160
.
9.
Haddad
,
S. D.
, and
Tjan
,
K. T.
,
1995
, “
An Analytical Study of Offset Piston and Crankshaft Designs and the Effect of Oil Film on Piston Slap Excitation in a Diesel Engine
,”
Mech. Mach. Theory
,
30
(
2
), pp.
271
284
.
10.
Nakashima
,
K.
,
Yajima
,
Y.
, and
Suzuki
,
K.
,
1999
, “
Approach to Minimization of Piston Slap Force for Noise Reduction—Investigation of Piston Slap Force by Numerical Simulation
,”
SAE Jpn.
,
20
(
2
), pp.
211
216
.
11.
Nakayama
,
K.
,
Tamaki
,
S.
,
Miki
,
H.
, and
Takiguchi
,
M.
,
2000
, “
The Effect of Crankshaft Offset on Piston Friction Force in a Gasoline Engine
,”
SAE
Paper No. 2000-01-0922.
12.
Mansouri
,
S. H.
, and
Wong
,
V. W.
,
2005
, “
Effects of Piston Design Parameters on Piston Secondary Motion and Skirt-Liner Friction
,”
Proc. Inst. Mech. Eng. Part J
,
219
(
6
), pp.
435
449
.
13.
Offner
,
G.
,
Lorenz
,
N.
, and
Knaus
,
O.
,
2012
, “
Piston Clearance Optimization Using Thermos-Elasto Hydrodynamic Simulation to Reduce Piston Slap Excitation and Friction Loss
,”
SAE
Paper No. 2012-01-1530.
14.
Kurt
,
M.
,
Eriten
,
M.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2014
, “
Frequency-Energy Plots of Steady-State Solutions for Forced and Damped Systems, and Vibration Isolation by Nonlinear Mode Localization
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
8
), pp.
2905
2917
.
15.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. App. Mech.
,
68
(
1
), pp.
34
41
.
16.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Gendelman
,
O.
, and
Bergman
,
L.
,
2003
, “
Dynamics of Linear Discrete Systems Connected to Local, Essentially Non-Linear Attachements
,”
J. Sound Vib.
,
264
(
3
), pp.
559
577
.
17.
Manevitch
,
L. I.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2007
, “
Toward the Design of an Optimal Energetic Sink in a Strongly Inhomogeneous Two-Degree-of-Freedom System
,”
ASME J. App. Mech.
,
74
(
6
), pp.
1078
1086
.
18.
Gendelman
,
O.
,
2008
, “
Transition of Energy to a Nonlinear Localised Model in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
(1–3), pp.
237
253
.
19.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2008
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. App. Mech.
,
74
(
2
), pp.
325
331
.
20.
Dolatabadi
,
N.
,
Theodossiades
,
S.
, and
Rothberg
,
S. J.
,
2017
, “
Passive Control of Piston Secondary Motion Using Nonlinear Energy Absorbers
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051009
.
21.
Karayannis
,
I.
,
Vakakis
,
A. F.
, and
Georgiades
,
F.
,
2008
, “
Vibro-Impact Attachments as Shock Absorbers
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
10
), pp.
1899
1908
.
22.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2007
, “
Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers—Part 1: Theory
,”
J. AIAA
,
45
(
10
), pp.
693
711
.
23.
Dolatabadi
,
N.
,
Theodossiades
,
S.
, and
Rothberg
,
S. J.
,
2015
, “
On the Identification of Piston Slap Events in Internal Combustion Engines Using Tribodynamic Analysis
,”
Mech. Sys. Sig. Proc.
,
58–59
, pp.
308
324
.
24.
Dolatabadi
,
N.
,
Littlefair
,
B.
,
De-La-Cruz
,
M.
,
Theodossiades
,
S.
,
Rothberg
,
S. J.
, and
Rahnejat
,
H.
,
2015
, “
A Transient Tribodynamic Approach for the Calculation of Internal Combustion Engine Piston Slap Noise
,”
J. Sound Vib.
,
352
, pp.
192
209
.
25.
Littlefair
,
B.
,
De-La-Cruz
,
M.
,
Theodossiades
,
S.
,
Mills
,
R.
,
Howell-Smith
,
S.
,
Rahnejat
,
H.
, and
Dwyer-Joyce
,
R.
,
2014
, “
Transient Tribo-Dynamics of Thermos-Elastic Compliant High-Performance Piston Skirts
,”
Trib. Lett.
,
53
(
1
), pp.
51
70
.
26.
Meng
,
X.
, and
Xie
,
Y.
,
2012
, “
A New Numerical Analysis for Piston Skirt-Liner System Lubrication Considering the Effects of Connecting Rod Inertia
,”
Trib. Int.
,
47
, pp.
235
243
.
27.
Balakrishnan
,
S.
,
2002
, “
Transient Elasto-Hydrodynamic Analysis of Piston Skirt Lubricated Contact Under Combined Axial, Lateral, and Tilting Motion
,”
Ph.D. thesis
, Loughborough University, Loughborough, UK.https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/19897
28.
Cho
,
J.
, and
Jang
,
S.
,
2004
, “
Effects of Skirt Profiles on the Piston Secondary Movements by the Lubrication Behavior
,”
Int. J. Auto. Tech.
,
5
(
1
), pp.
23
31
.
29.
Goenka
,
P. K.
, and
Meernik
,
P. R.
,
1992
, “
Lubrication Analysis of Piston Skirts
,”
SAE
Paper No. 920490.
30.
Hertz
,
H.
,
1882
, “
Über Die Berührung Fester Elastischer Körper (on the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
,
92
(10), pp.
156
171
(for English translation see Miscellaneous Papers by H. Hertz, Eds. Jones and Schott, London, Mcmillan, 1896).
31.
Ohta
,
K.
,
Amano
,
K.
,
Hayashida
,
A.
,
Zheng
,
G.
, and
Honda
,
I.
,
2011
, “
Analysis of Piston Slap Induced Noise and Vibration of Internal Combustion Engine (Effect of Piston Profile and Pin Offset)
,”
J. Environ. Eng.
,
6
(
3
), pp.
765
777
.
32.
Rahnejat
,
H.
,
2010
,
Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends
,
Woodhead Publishing Ltd
, Cambridge, UK, Chap. 10.
33.
Granick
,
N.
, and
Stern
,
J. E.
,
1965
, “
Material Damping of Aluminum by a Resonant-Dwell Technique
,” National Aeronautics and Space Administration, Washington, DC, Technical Note No.
D-2893
.https://ntrs.nasa.gov/search.jsp?R=19650021096
34.
Crawley
,
E. F.
, and
Van Schoor
,
M. C.
,
1987
, “
Material Damping in Aluminum and Metal Matrix Composites
,”
J. Compos. Mater.
,
21
(
6
), pp.
553
568
.
35.
Haddad
,
S. D.
, and
Fortescue
,
P. W.
,
1977
, “
Simulating Piston Slap by an Analogue Computer
,”
J. Sound Vib.
,
52
(
1
), pp.
79
93
.
36.
Cho
,
S. H.
,
Ahn
,
S. T.
, and
Kim
,
Y. H.
,
2002
, “
A Simple Model to Estimate the Impact Force Induced by Piston Slap
,”
J. Sound Vib.
,
255
(
2
), pp.
229
242
.
37.
Rahnejat
,
H.
,
1998
,
Multi-Body Dynamics: Vehicles, Machines and Mechanisms
,
Professional Engineering Publishing
,
London
.
38.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, Vol.
156
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
39.
Prata
,
A. T.
,
Fernandes
,
J. R. S.
, and
Fagotti
,
F.
,
2000
, “
Dynamic Analysis of Piston Secondary Motion for Small Reciprocating Compressors
,”
ASME J. Tribol.
,
122
(
4
), pp.
752
760
.
40.
Cho
,
J. R.
, and
Moon
,
S. J.
,
2005
, “
A Numerical Analysis of the Interaction Between the Piston Oil Film and the Component Deformation in a Reciprocating Compressor
,”
Trib. Int.
,
38
(
5
), pp.
459
468
.
41.
Gohar
,
R.
,
2001
,
Elastohydrodynamics
,
Imperial College Press
, London.
42.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge Press
,
Cambridge, UK
.
43.
Teodorescu
,
M.
,
Taraza
,
D.
,
Henein
,
N. A.
, and
Bryzik
,
W.
,
2003
, “
Simplified Elasto-hydrodynamic Friction Model of the Cam-Tappet Contact
,”
SAE
Paper No. 2003-01-0985.
44.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
45.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
46.
Perera
,
M. S. M.
,
2006
, “
Multi-Physics for Integrated Analysis of Flexible Body Dynamics With Tribological Conjunction in IC Engines
,” Ph.D. thesis, Loughborough University, Loughborough, UK.
47.
Dolatabadi
,
N.
,
Theodossiades
,
S.
, and
Rothberg
,
S. J.
,
2015
, “
Application of Nonlinear Vibration Absorbers to the Control of Piston Secondary Motion in Internal Combustion Engines
,”
ASME
Paper No. DETC2015-47410.
48.
Haris
,
A.
,
Motato
,
E.
,
Mohammadpour
,
M.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
,
O' Mahony
,
M.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
,
2017
, “
On the Effect of Multiple Parallel Nonlinear Absorbers in Palliation of Torsional Response of Automotive Drivetrain
,”
Int. J. Non-Linear Mech.
,
96
, pp.
22
35
.
49.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes—Part I: A Useful Framework for the Structural Dynamicists
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.
50.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2009
, “
Nonlinear Normal Modes—Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.
You do not currently have access to this content.