By using a simple state feedback control technique and introducing two new nonlinear functions into a modified Sprott B system, a novel four-dimensional (4D) no-equilibrium hyper-chaotic system with grid multiwing hyper-chaotic hidden attractors is proposed in this paper. One remarkable feature of the new presented system is that it has no equilibrium points and therefore, Shil'nikov theorem is not suitable to demonstrate the existence of chaos for lacking of hetero-clinic or homo-clinic trajectory. But grid multiwing hyper-chaotic hidden attractors can be obtained from this new system. The complex hidden dynamic behaviors of this system are analyzed by phase portraits, the time domain waveform, Lyapunov exponent spectra, and the Kaplan–York dimension. In particular, the Lyapunov exponent spectra are investigated in detail. Interestingly, when changing the newly introduced nonlinear functions of the new hyper-chaotic system, the number of wings increases. And with the number of wings increasing, the region of the hyper-chaos is getting larger, which proves that this novel proposed hyper-chaotic system has very rich and complicated hidden dynamic properties. Furthermore, a corresponding improved module-based electronic circuit is designed and simulated via multisim software. Finally, the obtained experimental results are presented, which are in agreement with the numerical simulations of the same system on the matlab platform.

References

References
1.
Rössler
,
O. E.
,
1979
, “
An Equation for Hyperchaos
,”
Phys. Lett. A
,
71
(
2–3
), pp.
155
157
.
2.
Chen
,
A.
,
Lu
,
J.
,
,
J.
, and
Yu
,
S.
,
2006
, “
Generating Hyperchaotic Lü Attractor Via State Feedback Control
,”
Phys. A
,
364
, pp.
103
110
.
3.
Jia
,
Q.
,
2007
, “
Hyperchaos Generated From the Lorenz Chaotic System and Its Control
,”
Phys. Lett. A
,
366
(
3
), pp.
217
222
.
4.
Tam
,
L. M.
,
Chen
,
J. H.
,
Chen
,
H. K.
, and
Tou
,
W. M. S.
,
2008
, “
Generation of Hyperchaos From the Chen–Lee System Via Sinusoidal Perturbation
,”
Chaos, Solitons Fractals
,
38
(
3
), pp.
826
839
.
5.
Wang
,
J.
,
Chen
,
Z.
,
Chen
,
G.
, and
Yuan
,
Z.
,
2008
, “
A Novel Hyperchaotic System and Its Complex Dynamics
,”
Int. J. Bifurcation Chaos
,
18
(
11
), pp.
3309
3324
.
6.
Wang
,
S.
, and
Wu
,
R.
,
2017
, “
Dynamic Analysis of a 5D Fractional-Order Hyperchaotic System
,”
Int. J. Control Autom. Syst.
,
15
(
3
), pp.
1
8
.
7.
Cang
,
S.
,
Qi
,
G.
, and
Chen
,
Z.
,
2010
, “
A Four-Wing Hyper-Chaotic Attractor and Transient Chaos Generated From a New 4-D Quadratic Autonomous System
,”
Nonlinear Dyn.
,
59
(
3
), pp.
515
527
.
8.
Ghosh
,
D.
, and
Bhattacharya
,
S.
,
2010
, “
Projective Synchronization of New Hyperchaotic System With Fully Unknown Parameters
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
11
21
.
9.
Li
,
X.
, and
Wu
,
R.
,
2014
, “
Hopf Bifurcation Analysis of a New Commensurate Fractional-Order Hyperchaotic System
,”
Nonlinear Dyn.
,
78
(
1
), pp.
279
288
.
10.
Sundarapandian
,
V.
,
Christos
,
V.
,
Vietthanh
,
P.
, and
Kavitha
,
M.
,
2015
, “
Analysis, Adaptive Control and Synchronization of a Novel 4-D Hyperchaotic Hyperjerk System and Its SPICE Implementation
,”
Arch. Control Sci.
,
25
(
1
), pp.
135
158
.
11.
Zarei
,
A.
,
2015
, “
Complex Dynamics in a 5-D Hyper-Chaotic Attractor With Four-Wing, One Equilibrium and Multiple Chaotic Attractors
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
585
605
.
12.
Zarei
,
A.
, and
Tavakoli
,
S.
,
2016
, “
Hopf Bifurcation Analysis and Ultimate Bound Estimation of a New 4-D Quadratic Autonomous Hyper-Chaotic System
,”
Appl. Math. Comput.
,
291
, pp.
323
339
.
13.
Lorenz
,
N.
,
1962
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
14.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet Another Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
9
(
7
), pp.
1465
1466
.
15.
,
J.
, and
Chen
,
G.
,
2002
, “
A New Chaotic Attractor Coined
,”
Int. J. Bifurcation Chaos
,
12
(
3
), pp.
659
661
.
16.
Liu
,
C.
,
Liu
,
T.
,
Liu
,
L.
, and
Liu
,
K.
,
2004
, “
A New Chaotic Attractor
,”
Chaos, Solitons Fractals
,
22
(
5
), pp.
1031
1038
.
17.
Sadoudi
,
S.
,
Tanougast
,
C.
,
Azzaz
,
M. S.
, and
Dandache
,
A.
,
2013
, “
Design and FPGA Implementation of a Wireless Hyperchaotic Communication System for Secure Real-Time Image Transmission
,”
EURASIP J. Image Video Process.
,
2013
(
1
), pp.
1
18
.
18.
Filali
,
R. L.
,
Benrejeb
,
M.
, and
Borne
,
P.
,
2014
, “
On Observer-Based Secure Communication Design Using Discrete-Time Hyperchaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
5
), pp.
1424
1432
.
19.
Hassan
,
M. F.
,
2014
, “
A New Approach for Secure Communication Using Constrained Hyperchaotic Systems
,”
Appl. Math. Comput.
,
246
, pp.
711
730
.
20.
Wu
,
X.
,
Fu
,
Z.
, and
Kurths
,
J.
,
2015
, “
A Secure Communication Scheme Based Generalized Function Projective Synchronization of a New 5D Hyperchaotic System
,”
Phys. Scr.
,
90
(
4
), p. 045210.
21.
Li
,
C.
,
Liu
,
Y.
,
Xie
,
T.
, and
Chen
,
M. Z. Q.
,
2013
, “
Breaking a Novel Image Encryption Scheme Based on Improved Hyperchaotic Sequences
,”
Nonlinear Dyn.
,
73
(
3
), pp.
2083
2089
.
22.
Boriga
,
R.
,
Dăscălescu
,
A. C.
, and
Priescu
,
I.
,
2014
, “
A New Hyperchaotic Map and Its Application in an Image Encryption Scheme
,”
Signal Process. Image Commun.
,
29
(
8
), pp.
887
901
.
23.
Norouzi
,
B.
, and
Mirzakuchaki
,
S.
,
2014
, “
A Fast Color Image Encryption Algorithm Based on Hyper-Chaotic Systems
,”
Nonlinear Dyn.
,
78
(
2
), pp.
995
1015
.
24.
Wu
,
X.
,
Bai
,
C.
, and
Kan
,
H.
,
2014
, “
A New Color Image Cryptosystem Via Hyperchaos Synchronization
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
6
), pp.
1884
1897
.
25.
Wang
,
X.
, and
Zhang
,
H. L.
,
2016
, “
A Novel Image Encryption Algorithm Based on Genetic Recombination and Hyper-Chaotic Systems
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
333
346
.
26.
Swathy
,
P. S.
, and
Thamilmaran
,
K.
,
2014
, “
Hyperchaos in SC-CNN Based Modified Canonical Chua's Circuit
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2639
2650
.
27.
Wu
,
R.
,
Lu
,
Y.
, and
Chen
,
L.
,
2015
, “
Finite-Time Stability of Fractional Delayed Neural Networks
,”
Neurocomputing
,
149
(
Pt. B
), pp.
700
707
.
28.
Chen
,
L.
,
Wu
,
R.
,
Chu
,
Z.
, and
He
,
Y.
,
2016
, “
Stabilization of Fractional-Order Coupled Systems With Time Delay on Networks
,”
Nonlinear Dyn.
,
88
(
1
), pp.
1
8
.
29.
Yu
,
S.
,
Chen
,
G.
, and
Yu
,
X.
,
2010
, “
Design and Implementation of Grid Multiwing Butterfly Chaotic Attractors From a Piecewise Lorenz System
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
57
(
10
), pp.
803
807
.
30.
Yu
,
S.
,
Tang
,
W. K. S.
, and
Chen
,
G.
,
2010
, “
Generating 2n-Wing Attractors From Lorenz-Like Systems
,”
Int. J. Circuit Theory Appl.
,
38
(
3
), pp.
243
258
.
31.
Yu
,
S.
,
Tang
,
W. K. S.
, and
Chen
,
G.
,
2010
, “
Design and Implementation of Multi-Wing Butterfly Chaotic Attractors Via Lorenz-Type Systems
,”
Int. J. Bifurcation Chaos
,
20
(
1
), p.
1002538
.
32.
Lai
,
Q.
,
Guan
,
Z.-H.
,
Wu
,
Y.
,
Liu
,
F.
, and
Zhang
,
D.-X.
,
2013
, “
Generation of Multi-Wing Chaotic Attractors From a Lorenz-Like System
,”
Int. J. Bifurcation Chaos
,
23
(
9
), p.
1350152
.
33.
Huang
,
Y.
,
Zhang
,
P.
, and
Zhao
,
W.
,
2017
, “
Novel Grid Multiwing Butterfly Chaotic Attractors and Their Circuit Design
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
62
(
5
), pp.
496
500
.
34.
Grassi
,
G.
,
Severance
,
F. L.
, and
Miller
,
D. A.
,
2009
, “
Multi-Wing Hyperchaotic Attractors From Coupled Lorenz Systems
,”
Chaos, Solitons Fractals
,
41
(
1
), pp.
284
291
.
35.
Yu
,
B.
, and
Hu
,
G.
,
2010
, “
Constructing Multiwing Hyperchaotic Attractors
,”
Int. J. Bifurcation Chaos.
,
20
(
3
), pp.
727
734
.
36.
Zhang
,
C.
, and
Yu
,
S.
,
2013
, “
On Constructing Complex Grid Multi-Wing Hyperchaotic System: Theoretical Design and Circuit Implementation
,”
Int. J. Circuit Theory Appl.
,
41
(
3
), pp.
221
237
.
37.
Zhang
,
C.
,
2016
, “
Theoretical Design Approach of Four-Dimensional Piecewise-Linear Multi-Wing Hyperchaotic Differential Dynamic System
,”
Opt.-Int. J. Light Electron Opt.
,
127
(
11
), pp.
4575
4580
.
38.
Leonov
,
G. A.
,
Kuznetsov
,
N. V.
, and
Vagaitsev
,
V. I.
,
2012
, “
Hidden Attractor in Smooth Chua Systems
,”
Phys. D
,
241
(
18
), pp.
1482
1486
.
39.
Jafari
,
S.
,
Sprott
,
J. C.
, and
Nazarimehr
,
F.
,
2015
, “
Recent New Examples of Hidden Attractors
,”
Eur. Phys. J. Spec. Top.
,
224
(
8
), pp.
1469
1476
.
40.
Dudkowski
,
D.
,
Jafari
,
S.
,
Kapitaniak
,
T.
,
Kuznetsov
,
N. V.
,
Leonov
,
G. A.
, and
Prasad
,
A.
,
2016
, “
Hidden Attractors in Dynamical Systems
,”
Phys. Rep.
,
637
(
37
), pp.
1
50
.
41.
Jafari
,
M. A.
,
Mliki
,
E.
,
Akgul
,
A.
,
Pham
,
V. T.
,
Kingni
,
S. T.
,
Wang
,
X.
, and
Jafari
,
S.
,
2017
, “
Chameleon: The Most Hidden Chaotic Flow
,”
Nonlinear Dyn.
,
88
(3), pp.
2303
2317
.
42.
Shahzad
,
M.
,
Pham
,
V. T.
,
Ahmad
,
M. A.
,
Jafari
,
S.
, and
Hadaeghi
,
F.
,
2015
, “
Synchronization and Circuit Design of a Chaotic System With Coexisting Hidden Attractors
,”
Eur. Phys. J. Spec. Top.
,
224
(
8
), pp.
1637
1652
.
43.
Wei
,
Z.
,
2011
, “
Dynamical Behaviors of a Chaotic System With No Equilibria
,”
Phys. Lett. A
,
376
(
2
), pp.
102
108
.
44.
Wang
,
Z.
, and
Cang
,
S.
,
2012
, “
A Hyperchaotic System Without Equilibrium
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
531
537
.
45.
Wang
,
Z.
,
Sun
,
W.
,
Wei
,
Z.
, and
Zhang
,
S.
,
2015
, “
Dynamics and Delayed Feedback Control for a 3D Jerk System With Hidden Attractor
,”
Nonlinear Dyn.
,
82
(
1–2
), pp. 577–588.
46.
Wei
,
Z.
,
Yu
,
P.
,
Zhang
,
W.
, and
Yao
,
M.
,
2015
, “
Study of Hidden Attractors, Multiple Limit Cycles From Hopf Bifurcation and Boundedness of Motion in the Generalized Hyperchaotic Rabinovich System
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
131
141
.
47.
Tahir
,
F. R.
,
Jafari
,
S.
,
Pham
,
V.-T.
,
Volos
,
C.
, and
Wang
,
X.
,
2015
, “
A Novel No-Equilibrium Chaotic System With Multiwing Butterfly Attractors
,”
Int. J. Bifurcation Chaos
,
25
(
4
), p.
1550056
.
48.
Wang
,
Z.
,
Ma
,
J.
,
Cang
,
S.
,
Wang
,
Z.
, and
Chen
,
Z.
,
2015
, “
Simplified Hyper-Chaotic Systems Generating Multi-Wing Non-Equilibrium Attractors
,”
Opt. Int. J. Light Electron Opt.
,
127
(
5
), pp.
2424
2431
.
49.
Zhou
,
L.
,
Wang
,
C.
, and
Zhou
,
L.
,
2017
, “
A Novel No‐Equilibrium Hyperchaotic Multi‐Wing System Via Introducing Memristor
,”
Int. J. Circuit Theory Appl.
,
46
(
2
), pp. 84–98.
50.
Zhou
,
T.
,
Chen
,
G.
, and
Yang
,
Q.
,
2004
, “
Constructing a New Chaotic System Based on the Shilnikov Criterion
,”
Chaos Solitons Fractals
,
19
(
4
), pp.
985
993
.
51.
Yu
,
S.
,
Lu
,
J.
,
Yu
,
X.
, and
Chen
,
G.
,
2012
, “
Design and Implementation of Grid Multiwing Hyperchaotic Lorenz System Family Via Switching Control and Constructing Super-Heteroclinic Loops
,”
IEEE Trans. Circuits Syst. I: Regular Papers
,
59
(
5
), pp.
1015
1028
.
52.
Silva
,
C. P.
,
1993
, “
Shil'nikov's Theorem—A Tutorial
,”
IEEE Trans. Circuits Syst. I: Fundamental Theory Appl.
,
40
(
10
), pp.
675
682
.
53.
Sprott
,
J. C.
,
1994
, “
Some Simple Chaotic Flows
,”
Phys. Rev. E
,
50
(
2
), pp.
R647
R650
.
54.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2009
, “
A Novel Three-Dimensional Autonomous Chaotic System Generating Two, Three and Four-Scroll Attractors
,”
Phys. Lett. A
,
373
(
40
), pp.
3637
3642
.
55.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D
,
16
(
3
), pp.
285
317
.
56.
Chen
,
L.
,
Pan
,
W.
,
Wu
,
R.
,
Tenreiro Machado
,
J. A.
, and
Lopes
,
A. M.
,
2016
, “
Design and Implementation of Grid Multi-Scroll Fractional-Order Chaotic Attractors
,”
Chaos
,
26
(
8
), p.
084303
.
57.
Zhang
,
S.
,
Zeng
,
Y. C.
,
Li
,
Z. J.
,
Wang
,
M. J.
, and
Xiong
,
L.
,
2018
, “
Generating One to Four-Wing Hidden Attractors in a Novel 4D No-Equilibrium Chaotic System With Extreme Multistability
,”
Chaos
,
28
(
1
), p.
013113
.
You do not currently have access to this content.