We investigate exact enlarged controllability (EEC) for time fractional diffusion systems of Riemann–Liouville type. The Hilbert uniqueness method (HUM) is used to prove EEC for both cases of zone and pointwise actuators. A penalization method is given and the minimum energy control is characterized.

References

References
1.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2017
,
Fractional Calculus
,
World Scientific Publishing
,
Hackensack, NJ
.
2.
Malinowska
,
A. B.
,
Odzijewicz
,
T.
, and
Torres
,
D. F. M.
,
2015
,
Advanced Methods in the Fractional Calculus of Variations, SpringerBriefs in Applied Sciences and Technology
,
Springer
,
Cham, Switzerland
.
3.
Saha Ray
,
S.
,
2016
,
Fractional Calculus With Applications for Nuclear Reactor Dynamics
,
CRC Press
,
Boca Raton, FL
.
4.
Almeida
,
R.
,
Pooseh
,
S.
, and
Torres
,
D. F. M.
,
2015
,
Computational Methods in the Fractional Calculus of Variations
,
Imperial College Press
,
London
.
5.
Gujarathi
,
A. M.
, and
Babu
,
B. V.
,
2017
,
Evolutionary Computation
,
Apple Academic Press
,
Oakville, ON, Canada
.
6.
Darling
,
R.
, and
Newman
,
J.
,
1997
, “
On the Short-Time Behavior of Porous Intercalation Electrodes
,”
J. Electrochem. Soc.
,
144
(
9
), pp.
3057
3063
.
7.
Oldham
,
K. B.
,
2010
, “
Fractional Differential Equations in Electrochemistry
,”
Adv. Eng. Software
,
41
(
1
), pp.
9
12
.
8.
Battaglia
,
J. L.
,
Batsale
,
J. C.
,
Le Lay
,
L.
,
Oustaloup
,
A.
, and
Cois
,
O.
,
2000
, “
Heat Flux Estimation Through Inverted Non-Integer Identification Models
,”
Int. J. Therm. Sci.
,
39
(
3
), pp.
374
389
.
9.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
10.
Catania
,
G.
, and
Sorrentino
,
S.
,
2007
, “
Analytical Modelling and Experimental Identification of Viscoelastic Mechanical Systems
,”
Advances in Fractional Calculus
,
Springer
,
Dordrecht, The Netherlands
, pp.
403
416
.
11.
Baleanu
,
D.
,
Wu
,
G.-C.
, and
Zeng
,
S.-D.
,
2017
, “
Chaos Analysis and Asymptotic Stability of Generalized Caputo Fractional Differential Equations
,”
Chaos Solitons Fract.
,
102
, pp.
99
105
.
12.
Cois
,
O.
,
Oustaloup
,
A.
,
Battaglia
,
E.
, and
Battaglia
,
J.-L.
,
2000
, “
Non Integer Model From Modal Decomposition for Time Domain System Identification
,”
IFAC Proc.
,
33
(
15
), pp.
989
994
.
13.
Malinowska
,
A. B.
, and
Torres
,
D. F. M.
,
2012
,
Introduction to the Fractional Calculus of Variations
,
Imperial College Press
,
London
.
14.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific Publishing
,
Singapore
.
15.
Cresson
,
J.
,
2014
,
Fractional Calculus in Analysis, Dynamics and Optimal Control
,
Nova Science Pub
,
New York
.
16.
Magin
,
R. L.
,
2006
,
Fractional Calculus in Bioengineering
,
Begell House Publishers, Danbury, CT
.
17.
Chen
,
W.
,
Liang
,
Y.
,
Hu
,
S.
, and
Sun
,
H.
,
2015
, “
Fractional Derivative Anomalous Diffusion Equation Modeling Prime Number Distribution, Fract
,”
Calc. Appl. Anal.
,
18
(
3
), pp.
789
798
.
18.
Chen
,
W.
,
Hu
,
S.
, and
Cai
,
W.
,
2016
, “
A Causal Fractional Derivative Model for Acoustic Wave Propagation in Lossy Media
,”
Arch. Appl. Mech.
,
86
(
3
), pp.
529
539
.
19.
Wei
,
S.
,
Chen
,
W.
, and
Hon
,
Y. C.
,
2016
, “
Characterizing Time Dependent Anomalous Diffusion Process: A Survey on Fractional Derivative and Nonlinear Models
,”
Phys. A
,
462
, pp.
1244
1251
.
20.
El Jai
,
A.
, and
Pritchard
,
A. J.
,
1988
,
Sensors and Actuators in Distributed Systems Analysis
,
Wiley
,
New York
.
21.
Zerrik
,
E.
,
1993
, “
Regional Analysis of Distributed Parameter Systems
,”
Ph.D. thesis
, University of Rabat, Rabat, Morocco.http://mechatronics.ucmerced.edu/RA-DPS
22.
El Jai
,
A.
,
Pritchard
,
A. J.
,
Simon
,
M. C.
, and
Zerrik
,
E.
,
1995
, “
Regional Controllability of Distributed Systems
,”
Int. J. Control
,
62
(6), pp.
1351
1365
.
23.
Lions
,
J. L.
,
1971
,
Optimal Control of Systems Governed Partial Differential Equations
,
Springer
,
New York
.
24.
Bergounioux
,
M.
,
1992
, “
A Penalization Method for Optimal Control of Elliptic Problems With State Constraints
,”
SIAM J. Control Optim.
,
30
(
2
), pp.
305
323
.
25.
Bonnans
,
J. F.
, and
Casas
,
E.
,
1985
, “
On the Choice of the Function Space for Some State Constrained Control Problems
,”
Numer. Funct. Anal. Optim.
,
7
(4), pp.
333
348
.
26.
Kazufumi
,
I.
, and
Kunisch
,
K.
,
2008
,
Lagrange Multiplier Approach to Variational Problems and Applications
,
Society of Indian Automobile Manufactures
,
Philadelphia, PA
.
27.
Barbu
,
V.
, and
Precupanu
,
T.
,
2012
,
Convexity and Optimization in Banach Spaces
,
Springer, Dordrecht
,
The Netherlands
.
28.
Lasiecka
,
I.
,
1980
, “
State Constrained Control Problems for Parabolic Systems: Regularity of Optimal Solutions
,”
Appl. Math. Optim.
,
6
(1), pp.
1
29
.
29.
Lions
,
J. L.
,
1988
,
Contrôlabilité Exacte, Perturbations Et Stabilisation De Systèmes Distribués
,
Masson
,
Paris, France
.
30.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
31.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
32.
Engel
,
K.-J.
, and
Nagel
,
R.
,
2006
,
A Short Course on Operator Semigroups
,
Springer
,
New York
.
33.
Renardy
,
M.
, and
Rogers
,
R. C.
,
2004
,
An Introduction to Partial Differential Equations
,
Springer-Verlag
,
New York
.
34.
Baleanu
,
D.
,
Jafari
,
H.
,
Khan
,
H.
, and
Johnston
,
S. J.
,
2015
, “
Results for Mild Solution of Fractional Coupled Hybrid Boundary Value Problems
,”
Open Math.
,
13
(1), pp.
601
608
.
35.
Debbouche
,
A.
, and
Torres
,
D. F. M.
,
2013
, “
Approximate Controllability of Fractional Nonlocal Delay Semilinear Systems in Hilbert Spaces
,”
Int. J. Control
,
86
(
9
), pp.
1577
1585
.
36.
Debbouche
,
A.
, and
Torres
,
D. F. M.
,
2014
, “
Approximate Controllability of Fractional Delay Dynamic Inclusions With Nonlocal Control Conditions
,”
Appl. Math. Comput.
,
243
, pp.
161
175
.
37.
Debbouche
,
A.
, and
Torres
,
D. F. M.
,
2015
, “
Sobolev Type Fractional Dynamic Equations and Optimal Multi-Integral Controls With Fractional Nonlocal Conditions
,”
Fract. Calc. Appl. Anal.
,
18
(
1
), pp.
95
121
.
38.
Ge
,
F.
,
Chen
,
Y. Q.
, and
Kou
,
C.
,
2015
, “Regional Controllability of Anomalous Diffusion Generated by the Time Fractional Diffusion Equations,”
ASME
Paper No. DETC2015-46697.
39.
Mainardi
,
F.
,
Paradisi
,
P.
, and
Gorenflo
,
R.
,
2007
, “Probability Distributions Generated by Fractional Diffusion Equations,” e-print arXiv:
0704.0320
.https://arxiv.org/abs/0704.0320
40.
Zhou
,
Y.
, and
Jiao
,
F.
,
2010
, “
Existence of Mild Solutions for Fractional Neutral Evolution Equations
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1063
1077
.
41.
Małgorzata
,
K.
,
2009
,
On Solutions of Linear Fractional Differential Equations of a Variational Type
,
Czestochowa University of Technology
,
Czestochowa, Poland
.
42.
Ge
,
F.
,
Chen
,
Y. Q.
, and
Kou
,
C.
,
2016
, “
Regional Gradient Controllability of Sub-Diffusion Processes
,”
J. Math. Anal. Appl.
,
440
(2), pp.
865
884
.
43.
Bodian
,
K.
,
Sene
,
A.
, and
Niane
,
M. T.
,
2005
, “
Exact Controllability of the Wave Equation in Fractional Order Spaces
,”
C. R. Math. Acad. Sci. Soc. R. Can.
,
27
(
1
), pp.
2
7
.
44.
Lagnese
,
J. E.
,
1993
, “
Modeling and Controllability of Interconnected Elastic Membranes
,”
Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena
,
Vorau
,
Austria
, pp.
281
299
.
45.
Sène
,
A.
,
2007
, “
Exact Boundary Controllability for the Semilinear Wave Equation in Fractional Order Spaces
,”
Global J. Pure Appl. Math.
,
3
(
2
), pp.
167
173
.
46.
Ge
,
F.
,
Chen
,
Y. Q.
, and
Kou
,
C.
,
2017
, “
Actuator Characterisations to Achieve Approximate Controllability for a Class of Fractional Sub-Diffusion Equations
,”
Int. J. Control
,
90
(
6
), pp.
1212
1220
.
47.
Bazhlekova
,
E.
,
2012
, “
Existence and Uniqueness Results for a Fractional Evolution Equation in Hilbert Space
,”
Fract. Calc. Appl. Anal.
,
15
(
2
), pp.
232
243
.
48.
Debbouche
,
A.
,
Nieto
,
J. J.
, and
Torres
,
D. F. M.
,
2017
, “
Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type With Nonlocal Nonlinear Fractional Differential Equations
,”
J. Optim. Theory Appl.
,
174
(
1
), pp.
7
31
.
49.
Jahanshahi
,
S.
, and
Torres
,
D. F. M.
,
2017
, “
A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems
,”
J. Optim. Theory Appl.
,
174
(
1
), pp.
156
175
.
50.
Mophou
,
G.
,
2017
, “
Optimal Control for Fractional Diffusion Equations With Incomplete Data
,”
J. Optim. Theory Appl.
,
174
(
1
), pp.
176
196
.
51.
Agarwal
,
R. P.
,
Baleanu
,
D.
,
Nieto
,
J. J.
,
Torres
,
D. F. M.
, and
Zhou
,
Y.
, 2017, “
A Survey on Fuzzy Fractional Differential and Optimal Control Nonlocal Evolution Equations
,”
J. Comput. Appl. Math.
, epub.
52.
Mozyrska
,
D.
, and
Torres
,
D. F. M.
,
2010
, “
Minimal Modified Energy Control for Fractional Linear Control Systems With the Caputo Derivative
,”
Carpathian J. Math.
,
26
(
2
), pp.
210
221
.https://www.semanticscholar.org/paper/Minimal-Modified-Energy-Control-for-Fractional-Lin-Mozyrska-Mozyrska/c75c99e1b07ff7bff02192b4240de241785c56ab
53.
Mozyrska
,
D.
, and
Torres
,
D. F. M.
,
2011
, “
Modified Optimal Energy and Initial Memory of Fractional Continuous-Time Linear Systems
,”
Signal Process.
,
91
(
3
), pp.
379
385
.
54.
Benharrat
,
M.
, and
Torres
,
D. F. M.
,
2014
, “
Optimal Control With Time Delays Via the Penalty Method
,”
Math. Probl. Eng.
,
2014
, p. 250419.
55.
Mophou
,
G.
, and
N'Guérékata
,
G. M.
,
2011
, “
Optimal Control of a Fractional Diffusion Equation With State Constraints
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1413
1426
.
56.
Ge
,
F.
,
Chen
,
Y. Q.
,
Kou
,
C.
, and
Podlubny
,
I.
,
2016
, “
On the Regional Controllability of the Sub-Diffusion Process With Caputo Fractional Derivative
,”
Fract. Calc. Appl. Anal.
,
19
(
5
), pp.
1262
1281
.
57.
Ge
,
F.
,
Chen
,
Y. Q.
, and
Kou
,
C.
,
2017
, “
Regional Boundary Controllability of Time Fractional Diffusion Processes
,”
IMA J. Math. Control Inform.
,
34
(
3
), pp.
871
888
.https://academic.oup.com/imamci/article-abstract/34/3/871/2885244?redirectedFrom=fulltext
You do not currently have access to this content.