This paper proposes new fractional-order (FO) models of seven nonequilibrium and stable equilibrium systems and investigates the existence of chaos and hyperchaos in them. It thereby challenges the conventional generation of chaos that involves starting the orbits from the vicinity of unstable manifold. This is followed by the discovery of coexisting hidden attractors in fractional dynamics. All the seven newly proposed fractional-order chaotic/hyperchaotic systems (FOCSs/FOHSs) ranging from minimum fractional dimension (nf) of 2.76 to 4.95, exhibit multiple hidden attractors, such as periodic orbits, stable foci, and strange attractors, often coexisting together. To the best of the our knowledge, this phenomenon of prevalence of FO coexisting hidden attractors in FOCSs is reported for the first time. These findings have significant practical relevance, because the attractors are discovered in real-life physical systems such as the FO homopolar disc dynamo, FO memristive system, FO model of the modulation instability in a dissipative medium, etc., as analyzed in this work. Numerical simulation results confirm the theoretical analyses and comply with the fact that multistability of hidden attractors does exist in the proposed FO models.

References

References
1.
Leonov
,
G. A.
,
Kuznetsov
,
N. V.
, and
Vagaitsev
,
V. I.
,
2011
, “
Localization of Hidden Chua's Attractors
,”
Phys. Lett. A
,
375
(
23
), pp.
2230
2233
.
2.
Borah
,
M.
, and
Roy
,
B. K.
,
2017
, “
An Enhanced Multi-Wing Fractional-Order Chaotic System With Coexisting Attractors and Switching Hybrid Synchronisation With Its Nonautonomous Counterpart
,”
Chaos, Solitons Fractals
,
102
, pp.
372
386
.
3.
Borah
,
M.
, and
Roy
,
B. K.
,
2017
, “
Hidden Attractor Dynamics of a Novel Non-Equilibrium Fractional-Order Chaotic System and Its Synchronisation Control
,”
IEEE Indian Control Conference
(
ICC
), Guwahati, India, Jan. 4–6, pp.
450
455
.
4.
Wei
,
Z.
,
Sprott
,
J. C.
, and
Chen
,
H.
,
2015
, “
Elementary Quadratic Chaotic Flows With a Single Non-Hyperbolic Equilibrium
,”
Phys. Lett. A
,
379
(
37
), pp.
2184
2187
.
5.
Borah
,
M.
,
Roy
,
P.
, and
Roy
,
B. K.
,
2016
, “
Synchronisation Control of a Novel Fractional-Order Chaotic System With Hidden Attractor
,”
IEEE Students' Technology Symposium
(
TechSym
), Kharagpur, India, Sept. 30–Oct. 2, pp.
163
168
.
6.
Jafari
,
S.
, and
Sprott
,
J. C.
,
2013
, “
Simple Chaotic Flows With a Line Equilibrium
,”
Chaos, Solitons Frac
,
57
, pp.
79
84
.
7.
Wei
,
Z.
,
Zhang
,
W.
, and
Wang
,
Z.
,
2015
, “
Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System
,”
Int. J. Bifurcation Chaos
,
25
(
2
), p.
1550028
.
8.
Danca
,
M. F.
,
2017
, “
Hidden Chaotic Attractors in Fractional-Order Systems
,”
Nonlinear Dyn.
,
89
(
1
), pp.
577
586
.
9.
Borah
,
M.
, and
Roy
,
B. K.
,
2017
, “
Can Fractional-Order Coexisting Attractors Undergo a Rotational Phenomenon?
,”
ISA Trans.
, in press.
10.
Wei
,
Z.
,
Moroz
,
I.
,
Sprott
,
J. C.
,
Akgul
,
A.
, and
Zhang
,
W.
,
2017
, “
Hidden Hyperchaos and Electronic Circuit Application in a 5D Self-Exciting Homopolar Disc Dynamo
,”
Chaos
,
27
(
3
), p.
033101
.
11.
Bao
,
B. C.
,
Bao
,
H.
,
Wang
,
N.
,
Chen
,
M.
, and
Xu
,
Q.
,
2017
, “
Hidden Extreme Multistability in Memristive Hyperchaotic System
,”
Chaos, Solitons Fractals
,
94
, pp.
102
111
.
12.
Bao
,
B.
,
Jiang
,
T.
,
Xu
,
Q.
,
Chen
,
M.
,
Wu
,
H.
, and
Hu
,
Y.
,
2016
, “
Coexisting Infinitely Many Attractors in Active Band-Pass Filter-Based Memristive Circuit
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1711
1723
.
13.
Sharma
,
P. R.
,
Shrimali
,
M. D.
,
Prasad
,
A.
, and
Feudel
,
U.
,
2013
, “
Controlling Bistability by Linear Augmentation
,”
Phys. Lett. A
,
377
(
37
), pp.
2329
2332
.
14.
Pham
,
V. T.
,
Volos
,
C.
,
Jafari
,
S.
, and
Kapitaniak
,
T.
,
2017
, “
Coexistence of Hidden Chaotic Attractors in a Novel No-Equilibrium System
,”
Nonlinear Dyn.
,
87
(
3
), pp.
2001
2010
.
15.
Wei
,
Z.
,
Yu
,
P.
,
Zhang
,
W.
, and
Yao
,
M.
,
2015
, “
Study of Hidden Attractors, Multiple Limit Cycles From Hopf Bifurcation and Boundedness of Motion in the Generalized Hyperchaotic Rabinovich System
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
131
141
.
16.
Wei
,
Z.
, and
Zhang
,
W.
,
2014
, “
Hidden Hyperchaotic Attractors in a Modified Lorenz–Stenflo System With Only One Stable Equilibrium
,”
Int. J. Bifurcation Chaos
,
24
(
10
), p.
1450127
.
17.
Ojoniyi
,
O. S.
, and
Njah
,
A. N.
,
2016
, “
A 5D Hyperchaotic Sprott B System With Coexisting Hidden Attractors
,”
Chaos, Solitons Fractals
,
87
, pp.
172
181
.
18.
Baleanu
,
D.
,
Machado
,
J. A. T.
, and
Luo
,
A. C. J.
,
2012
,
Fractional Dynamics and Control
,
Springer
,
New York
.
19.
Yang
,
J. H.
,
Sanjuan
,
M. A. F.
, and
Liu
,
H. G.
,
2017
, “
Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in Fractional-Order Duffing Oscillators
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051011
.
20.
Ahmadian
,
A.
,
Salahshour
,
S.
,
Baleanu
,
D.
,
Amirkhani
,
H.
, and
Yunus
,
R.
,
2015
, “
Tau Method for the Numerical Solution of a Fuzzy Fractional Kinetic Model and Its Application to the Oil Palm Frond as Apromising Source of Xylose
,”
J. Comput. Phys.
,
294
, pp.
562
584
.
21.
Borah
,
M.
, and
Roy
,
B. K.
,
2016
, “
Design of Fractional-Order Hyperchaotic Systems With Maximum Number of Positive Lyapunov Exponents and Their Antisynchronisation Using Adaptive Control
,”
Int. J. Control
, in press.
22.
Tian
,
X.
, and
Fei
,
S.
,
2015
, “
Adaptive Control for Fractional-Order Micro-Electro-Mechanical Resonator With Nonsymmetric Dead-Zone Input
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061022
.
23.
Hu
,
W.
,
Ding
,
D.
, and
Wang
,
N.
,
2017
, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041003
.
24.
Borah
,
M.
, and
Roy
,
B. K.
,
2017
, “
Dynamics of the Fractional-Order Chaotic PMSG, Its Stabilisation Using Predictive Control and Circuit Validation
,”
IET Electric Power Appl.
,
11
(
5
), pp.
707
716
.
25.
Jafarian
,
A.
,
Mokhtarpour
,
M.
, and
Baleanu
,
D.
,
2017
, “
Artificial Neural Network Approach for a Class of Fractional Ordinary Differential Equation
,”
ASME J. Comput. Appl. Math. Neural Comput. Appl.
,
28
(
4
), pp.
765
773
.
26.
Borah
,
M.
,
Roy
,
P.
, and
Roy
,
B. K.
,
2018
, “
Enhanced Performance in Trajectory Tracking of a Ball and Plate System Using Fractional Order Controller
,”
IETE J. Res.
,
64
(1), pp. 76–86.
27.
Arshad
,
S.
,
Baleanu
,
D.
,
Bu
,
W.
, and
Tang
,
Y.
,
2017
, “
Effects of HIV Infection on CD4+ T-Cell Population Based on a Fractional-Order Model
,”
Adv. Difference Equations
,
2017
(
1
), p.
92
.
28.
Pinto
,
C. M. A.
, and
Carvalho
,
A. R. M.
,
2017
, “
The Role of Synaptic Transmission in a HIV Model With Memory
,”
Appl. Math. Comput.
,
292
, pp.
76
95
.
29.
Pinto
,
C. M. A.
,
2017
, “
Persistence of Low Levels of Plasma Viremia and of the Latent Reservoir in Patients Under ART: A Fractional-Order Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
43
, pp.
251
260
.
30.
Borah
,
M.
, and
Roy
,
B. K.
,
2017
, “
Switching Synchronisation Control Between Integer-Order and Fractional-Order Dynamics of a Chaotic System
,”
IEEE Indian Control Conference
(
ICC
), Guwahati, India, Jan. 4–6, pp.
456
461
.
31.
Chen
,
D.
, and
Liu
,
W.
,
2016
, “
Chaotic Behavior and Its Control in a Fractional-Order Energy Demand–Supply System
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061010
.
32.
Pinto
,
C. M. A.
, and
Carvalho
,
A. R. M.
,
2015
, “Fractional Complex-Order Model HIV Infection with Drug Resistance During Therapy,”
J. Vib. Control
,
22
(
9
), pp.
2222
2239
.
33.
Sprott
,
J. C.
,
2011
, “
A Proposed Standard for the Publication of New Chaotic Systems
,”
Int. J. Bifurcation Chaos
,
21
(
9
), pp.
2391
2394
.
34.
Petras
,
I.
,
2011
, “
Fractional-Order Systems
,”
Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
,
A. C. J.
Luo
and
N. H.
Ibragimov
, eds., Springer, Berlin, pp.
47
49
.
35.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.
36.
Zhang
,
C.
, and
Yu
,
S.
,
2011
, “
Generation of Multi-Wing Chaotic Attractor in Fractional Order System
,”
Chaos, Solitons Fractals
,
44
(
10
), pp.
845
850
.
37.
Daftardar-Gejji
,
V.
,
Sukale
,
Y.
, and
Bhalekar
,
S.
,
2014
, “
A New Predictor–Corrector Method for Fractional Differential Equations
,”
Appl. Math. Comput.
,
244
, pp.
158
182
.
38.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D
,
16
(
3
), pp.
285
317
.
39.
Podlubny
,
I.
,
2002
, “
Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation
,” Fractional Calculus and Appl. Anal.,
5
(4), pp. 367–386.
40.
Sano
,
M.
, and
Sawada
,
Y.
,
1985
, “
Measurement of the Lyapunov Spectrum From a Chaotic Time Series
,”
Phys. Rev. Lett.
,
55
(
10
), pp.
1082
1085
.
41.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
,
1993
, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Phys. D
,
65
(
1–2
), pp.
117
134
.
42.
,
J.
,
Chen
,
G.
, and
Cheng
,
D.
,
2004
, “
A New Chaotic System and Beyond: The Generalized Lorenz-like System
,”
Int. J. Bifurcation Chaos
,
14
(
5
), pp.
1507
1537
.
43.
Qi
,
G.
,
Chen
,
G.
, and
Zhang
,
Y.
,
2008
, “
On a New Asymmetric Chaotic System
,”
Chaos, Solitons Fractals
,
37
(
2
), pp.
409
423
.
44.
Liu
,
Y.
,
Yang
,
Q.
, and
Pang
,
G.
,
2010
, “
A Hyperchaotic System From the Rabinovich System
,”
J. Comput. Appl. Math.
,
234
(
1
), pp.
101
113
.
You do not currently have access to this content.