This paper deals with the problem of master-slave synchronization of fractional-order chaotic systems with input saturation. Sufficient stability conditions for achieving the synchronization are derived from the basis of a fractional-order extension of the Lyapunov direct method, a new lemma of the Caputo fractional derivative, and a local sector condition. The stability conditions are formulated in linear matrix inequality (LMI) forms and therefore are readily solved. The fractional-order chaotic Lorenz and hyperchaotic Lü systems with input saturation are utilized as illustrative examples. The feasibility of the proposed synchronization scheme is demonstrated through numerical simulations.

References

References
1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
2.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer-Verlag
,
London
.
3.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems
,
Springer-Verlag
,
Berlin
.
4.
Baleanu
,
D.
,
Caponetto
,
R.
, and
Machado
,
J. A. T.
,
2016
, “
Challenges in Fractional Dynamics and Control Theory
,”
J. Vib. Control
,
22
(
9
), pp.
2151
2152
.
5.
Atıcı
,
F. M.
, and
Şengül
,
S.
,
2010
, “
Modeling With Fractional Difference Equations
,”
J. Math. Anal. Appl.
,
369
(
1
), pp.
1
9
.
6.
Wu
,
F.
, and
Liu
,
J.-F.
,
2016
, “
Discrete Fractional Creep Model of Salt Rock
,”
J. Comput. Complex. Appl.
,
2
(
1
), pp.
1
6
.http://www.computcomplex.com/upLoad/file/20151120/14480005132124280.pdf
7.
Hartly
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
,
1995
, “
Chaos in a Fractional Order Chua's System
,”
IEEE Trans. Circuits Syst. I
,
42
(
8
), pp.
485
490
.
8.
Grigorenko
,
L.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
,
91
(
3
), p.
034101
.
9.
Pan
,
L.
,
Zhou
,
W.
,
Zhou
,
L.
, and
Sun
,
K.
,
2011
, “
Chaos Synchronization Between Two Different Fractional-Order Hyperchaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(6), pp.
2628
2640
.
10.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2013
, “
The Proposed Modified Liu System With Fractional Order
,”
Adv. Math. Phys.
,
2013
, p.
186037
.
11.
Baleanu
,
D.
,
Magin
,
R. L.
,
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2015
, “
Chaos in the Fractional Order Nonlinear Bloch Equation With Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
25
(1–3), pp.
41
49
.
12.
Wu
,
G.-C.
, and
Baleanu
,
D.
,
2014
, “
Discrete Fractional Logistic Map and Its Chaos
,”
Nonlinear Dyn.
,
75
(
1–2
), pp.
283
287
.
13.
Wu
,
G.-C.
, and
Baleanu
,
D.
,
2015
, “
Discrete Chaos in Fractional Delayed Logistic Maps
,”
Nonlinear Dyn.
,
80
(
4
), pp.
1697
1703
.
14.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
15.
Kuntanapreeda
,
S.
,
2012
, “
Robust Synchronization of Fractional-Order Unified Chaotic Systems Via Linear Control
,”
Comput. Math. Appl.
,
63
(
1
), pp.
183
190
.
16.
Razminia
,
A.
, and
Baleanu
,
D.
,
2013
, “
Complete Synchronization of Commensurate Fractional Order Chaotic System Using Sliding Mode Control
,”
Mechatronics
,
23
(
7
), pp.
873
879
.
17.
Wu
,
G.-C.
, and
Baleanu
,
D.
,
2014
, “
Chaos Synchronization of Discrete Fractional Logistic Map
,”
Signal Process.
,
102
, pp.
96
99
.
18.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2015
, “
Synchronization in a Nonidentical Fractional Order of a Proposed Modified System
,”
J. Vib. Control
,
21
(
6
), pp.
1154
1161
.
19.
Lopes
,
A. M.
, and
Machado
,
J. A. T.
,
2015
, “
Visualizing Control Systems Performance: A Fractional Perspective
,”
Adv. Mech. Energy
,
7
(
12
), pp.
1
8
.
20.
Khamsuwan
,
P.
, and
Kuntanapreeda
,
S.
,
2016
, “
A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051021
.
21.
Shahri
,
E.
,
Alfi
,
A.
, and
Machado
,
J. A. T.
,
2016
, “
Stabilization of Fractional-Order Systems Subject to Saturation Element Using Fractional Dynamic Output Feedback Sliding Mode Control
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031014
.
22.
David
,
S. A.
,
Machado
,
J. A. T.
,
Quintino
,
D. D.
, and
Balthazar
,
J. M.
,
2016
, “
Partial Chaos Suppression in a Fractional Order Macroeconomic Model
,”
Math. Comput. Simul.
,
122
, pp.
55
68
.
23.
Gao
,
Y.-F.
,
Sun
,
X.-M.
,
Wen
,
C.
, and
Wang
,
W.
,
2017
, “
Adaptive Tracking Control for a Class of Stochastic Uncertain Nonlinear Systems With Input Saturation
,”
IEEE Trans. Autom. Control
,
62
(
5
), pp.
2498
2504
.
24.
Hu
,
Q.
,
Zhang
,
J.
, and
Friswell
,
M. I.
,
2015
, “
Finite-Time Coordinated Attitude Control for Spacecraft Formation Flying Under Input Saturation
,”
ASME J. Dyn. Sys., Meas., Control
,
137
(
6
), p.
061012
.
25.
Rehan
,
M.
,
Tufail
,
M.
,
Ahn
,
C. K.
, and
Chadli
,
M.
,
2017
, “
Stabilisation of Locally Lipschitz Non-Linear Systems Under Input Saturation and Quantisation
,”
IET Control Theory Appl.
,
11
(
9
), pp.
1459
1466
.
26.
Du
,
J.
,
Hu
,
X.
,
Krstić
,
M.
, and
Sun
,
Y.
,
2016
, “
Robust Dynamic Positioning of Ships With Disturbances Under Input Saturation
,”
Automatica
,
73
, pp.
207
214
.
27.
Zelei
,
A.
,
Bencsik
,
L.
, and
Stépán
,
G.
,
2016
, “
Handling Actuator Saturation as Underactuation: Case Study With Acroboter Service Robot
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031011
.
28.
Castelan
,
E. B.
,
Tarbouriech
,
S.
, and
Queinnec
,
I.
,
2005
, “
Stability and Stabilization of a Class of Nonlinear Systems With Saturating Actuators
,”
IFAC World Congr.
,
38
(1), pp.
729
734
.
29.
Tarbouriech
,
S.
,
Prieur
,
C.
, and
da Silva
,
J. M. G.
,
2006
, “
Stability Analysis and Stabilization of Systems Presenting Nested Saturations
,”
IEEE Trans. Autom. Control
,
51
(
8
), pp.
1364
1371
.
30.
Rehan
,
M.
,
2013
, “
Synchronization and Anti-Synchronization of Chaotic Oscillators Under Input Saturation
,”
Appl. Math. Model.
,
37
(
10–11
), pp.
6829
6837
.
31.
Ma
,
Y.
, and
Jing
,
Y.
,
2014
, “
Robust H∞ Synchronization of Chaotic System With Input Saturation and Time-Varying Delay
,”
Adv. Differ. Equations
,
2014
(
1
), p.
124
.
32.
Iqbal
,
M.
,
Rehan
,
M.
,
Hong
,
K.-S.
,
Khaliq
,
A.
, and
Rehman
,
S.-U.
,
2015
, “
Sector-Condition-Based Result for Adaptive Control and Synchronization of Chaotic Systems Under Input Saturation
,”
Chaos, Solitons Fractals
,
77
, pp.
158
169
.
33.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2009
, “
Mittag- Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
34.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
35.
Alikhanov
,
A. A.
,
2010
, “
A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations
,”
Differ. Equations
,
46
(
5
), pp.
660
666
.
36.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
37.
Duarte-Mermoud
,
M. A.
,
Aguila-Camacho
,
N.
,
Gallegos
,
J. A.
, and
Castro-Linares
,
R.
,
2015
, “
Using General Quadratic Lyapunov Function to Prove Lyapunov Uniform Stability for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
650
659
.
38.
Keshtkar
,
F.
,
Erjaee
,
G. H.
, and
Kheiri
,
H.
,
2016
, “
On Global Stability of Nonlinear Fractional Dynamical Systems
,”
J. Comput. Complex. Appl.
,
2
(
1
), pp.
16
23
.http://www.computcomplex.com/upLoad/file/20151120/14480007099843825.pdf
39.
Trigeassou
,
J.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2015
, “
Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041007
.
40.
Trigeassou
,
J.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2016
, “
Lyapunov Stability of Commensurate Fractional Order Systems: A Physical Interpretation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051007
.
41.
Shahri
,
E. S. A.
,
Alfi
,
A.
, and
Machado
,
J. A. T.
,
2015
, “
An Extension of Estimation of Domain of Attraction for Fractional Order Linear System Subject to Saturation Control
,”
App. Math. Lett.
,
47
, pp.
26
34
.
42.
Chen
,
F.
, and
Liu
,
Z.
,
2012
, “
Asymptotic Stability Results for Nonlinear Fractional Difference Equations
,”
J. Appl. Math.
,
2012
, p.
879657
.
43.
Abu-Saris
,
R.
, and
Al-Mdallal
,
Q.
,
2013
, “
On the Asymptotic Stability of Linear System of Fractional-Order Difference Equations
,”
Frac. Calc. Appl. Anal.
,
16
(
3
), pp.
613
629
.
44.
Chen
,
F.-L.
,
2015
, “
A Review of Existence and Stability Results for Discrete Fractional Equations
,”
J. Comput. Complex. Appl.
,
1
(
1
), pp.
22
53
.http://www.computcomplex.com/aspcms/news/2015-8-16/100.html
45.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Delgado-Aguilera
,
E.
,
2016
, “
Adaptive Synchronization of Fractional Lorenz Systems Using a Reduced Number of Control Signals and Parameters
,”
Chaos, Solitons Fractals
,
87
, pp.
1
11
.
46.
Lenka
,
B. K.
, and
Banerjee
,
S.
,
2018
, “
Sufficient Conditions for Asymptotic Stability and Stabilization of Autonomous Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
56
, pp.
365
379
.
47.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn..
,
29
, pp.
3
22
.
48.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithms
,
36
(
1
), pp.
31
52
.
You do not currently have access to this content.