We present a new approach to the construction of first integrals for second-order autonomous systems without invoking a Lagrangian or Hamiltonian reformulation. We show and exploit the analogy between integrating factors of first-order equations and their Lie point symmetry and integrating factors of second-order autonomous systems and their dynamical symmetry. We connect intuitive and dynamical symmetry approaches through one-to-one correspondence in the framework proposed for first-order systems. Conditional equations for first integrals are written out, as well as equations determining symmetries. The equations are applied on the simple harmonic oscillator and a class of nonlinear oscillators to yield integrating factors and first integrals.

References

References
1.
Gurevich
,
N. C.
,
1961
,
The Stability of Motion
,
Pergamon Press
,
New York
.
2.
Rouche
,
N.
,
Habets
,
P.
, and
Laloy
,
M.
,
1977
,
Stability Theory by Liapunov's Direct Method
, Vol.
4
,
Springer
,
New York
.
3.
González-López
,
A.
,
1988
, “
Symmetry and Integrability by Quadratures of Ordinary Differential Equations
,”
Phys. Lett. A
,
133
(
4–5
), pp.
190
194
.
4.
Hydon
,
P. E.
,
2000
,
Symmetry Methods for Differential Equations: A Beginner's Guide
, Vol.
22
,
Cambridge University Press
,
Cambridge, UK
.
5.
Arrigo
,
D. J.
,
2015
,
Symmetry Analysis of Differential Equations: An Introduction
,
Wiley
,
Hoboken, NJ
.
6.
Sarlet
,
W.
, and
Bahar
,
L. Y.
,
1980
, “
A Direct Construction of First Integrals for Certain Non-Linear Dynamical Systems
,”
Int. J. Non-Linear Mech.
,
15
(
2
), pp.
133
146
.
7.
Olver
,
P. J.
,
1995
,
Equivalence, Invariants and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
8.
Olver
,
P. J.
,
2000
,
Applications of Lie Groups to Differential Equations
, Vol.
107
,
Springer Science & Business Media
,
New York
.
9.
Bluman
,
G.
, and
Anco
,
S.
,
2008
,
Symmetry and Integration Methods for Differential Equations
, Vol.
154
,
Springer Science & Business Media
,
New York
.
10.
Muriel
,
C.
, and
Romero
,
J. L.
,
2001
, “
New Methods of Reduction for Ordinary Differential Equations
,”
IMA J. Appl. Math.
,
66
(
2
), pp.
111
125
.
11.
Muriel
,
C.
, and
Romero
,
J. L.
,
2008
, “
Integrating Factors and λ–Symmetries
,”
J. Nonlinear Math. Phys.
,
15
(
Suppl. 3
), pp.
300
309
.
12.
Muriel
,
C.
, and
Romero
,
J. L.
,
2009
, “
First Integrals, Integrating Factors and λ-Symmetries of Second-Order Differential Equations
,”
J. Phys. A: Math. Theor.
,
42
(
36
), p.
365207
.
13.
Duarte
,
L. G. S.
,
Duarte
,
S. E. S.
,
da Mota
,
L. A. C. P.
, and
Skea
,
J. E. F.
,
2001
, “
Solving Second-Order Ordinary Differential Equations by Extending the Prelle-Singer Method
,”
J. Phys. A: Math. General
,
34
(
14
), p.
3015
.
14.
Cheb-Terrab
,
E. S.
, and
Roche
,
A. D.
,
1999
, “
Integrating Factors for Second-Order Odes
,”
J. Symbolic Comput.
,
27
(
5
), pp.
501
519
.
15.
Leach
,
P. G. L.
, and
Bouquet
,
S. É.
,
2002
, “
Symmetries and Integrating Factors
,”
J. Nonlinear Math. Phys.
,
9
(
Suppl. 2
), pp.
73
91
.
16.
Hale
,
J. K.
, and
Hüseyin
,
K.
,
2012
,
Dynamics and Bifurcations
, Springer-Verlag, New York.
17.
Anco
,
S. C.
, and
Bluman
,
G.
,
1998
, “
Integrating Factors and First Integrals for Ordinary Differential Equations
,”
Eur. J. Appl. Math.
,
9
(
3
), pp.
245
259
.
18.
Ibragimov
,
N. H.
,
2005
, “
Invariant Lagrangians and a New Method of Integration of Nonlinear Equations
,”
J. Math. Anal. Appl.
,
304
(
1
), pp.
212
235
.
19.
Ibragimov
,
N. H.
,
2006
, “
Integrating Factors, Adjoint Equations and Lagrangians
,”
J. Math. Anal. Appl.
,
318
(
2
), pp.
742
757
.
20.
Cohen
,
A.
,
1911
,
An Introduction to the Lie Theory of One-Parameter Groups: With Applications to the Solution of Differential Equations
,
Health & Company
,
Washington, DC
.
21.
Myra
,
J. P.
, and
Singer
,
M. F.
,
1983
, “
Elementary First Integrals of Differential Equations
,”
Trans. Am. Math. Soc.
,
279
(
1
), pp.
215
229
.
22.
Man
,
Y. K.
,
1994
, “
First Integrals of Autonomous Systems of Differential Equations and the Prelle-Singer Procedure
,”
J. Phys. A: Math. General
,
27
(
10
), p.
L329
.
23.
Chandrasekar
,
V. K.
,
Pandey
,
S. N.
,
Senthilvelan
,
M.
, and
Lakshmanan
,
M.
,
2006
, “
A Simple and Unified Approach to Identify Integrable Nonlinear Oscillators and Systems
,”
J. Math. Phys.
,
47
(
2
), p.
023508
.
24.
Yaşar
,
E.
,
2011
, “
Integrating Factors and First Integrals for Liénard Type and Frequency-Damped Oscillators
,”
Math. Probl. Eng.
,
2011
, p.
916437
.
25.
Cantwell
,
B.
,
2002
,
Introduction to Symmetry Analysis
, Vol.
29
,
Cambridge University Press
,
Cambridge, UK
.
26.
Baer
,
S. M.
, and
Thomas
,
E.
,
1986
, “
Singular Hopf Bifurcation to Relaxation Oscillations
,”
SIAM J. Appl. Math.
,
46
(
5
), pp.
721
739
.
27.
Erneux
,
T.
,
Baer
,
S. M.
, and
Mandel
,
P.
,
1987
, “
Subharmonic Bifurcation and Bistability of Periodic Solutions in a Periodically Modulated Laser
,”
Phys. Rev. A
,
35
(
3
), p.
1165
.
28.
Beatty
,
J.
, and
Mickens
,
R. E.
,
2005
, “
A Qualitative Study of the Solutions to the Differential Equation
,”
J. Sound Vib.
,
283
(
1–2
), pp.
475
477
.
29.
Mickens
,
R. E.
,
2006
, “
Investigation of the Properties of the Period for the Nonlinear Oscillator
,”
J. Sound Vib.
,
292
(
3–5
), pp.
1031
1035
.
30.
Kalmár-Nagy
,
T.
, and
Erneux
,
T.
,
2008
, “
Approximating Small and Large Amplitude Periodic Orbits of the Oscillator
,”
J. Sound Vib.
,
313
(
3–5
), pp.
806
811
.
You do not currently have access to this content.