Complex and real valued exact solutions to some reaction-diffusion equations are suggested by using homogeneous balance and Sine-Gordon equation expansion method. The predicted solution of finite series of some hyperbolic functions is determined by using some relations between the hyperbolic functions and the trigonometric functions based on Sine-Gordon equation and traveling wave transform. The Newel–Whitehead–Segel (NWSE) and Zeldovich equations (ZE) are solved explicitly. Some complex valued solutions are depicted in real and imaginary components for some particular choice of parameters.

References

References
1.
Gilding
,
B. H.
, and
Kersner
,
R.
,
2001
,
Traveling Waves in Nonlinear Diffusion-Convection-Reaction
,
University of Twente
, Numerical Analysis and Computational Mechanics (NACM) Group, Enschede, The Netherlands.
2.
Newell
,
A. C.
, and
Whitehead
,
J. A.
,
1969
, “
Finite Bandwidth, Finite Amplitude Convection
,”
J. Fluid Mech.
,
38
(
2
), pp.
279
303
.
3.
Segel
,
A.
,
1969
, “
Distant Side-Walls Cause Slow Amplitude Modulation of Cellular Convection
,”
J. Fluid Mech.
,
38
(
1
), pp.
203
224
.
4.
Meiron
,
D.
, and
Newell
,
A. C.
,
1985
, “
The Shape of Stationary Dislocations
,”
Phys. Lett. A
,
113
(
5
), pp.
289
292
.
5.
Nepomnyashcy
,
A. A.
, and
Pismen
,
L. M.
,
1991
, “
Singular Solutions of the Nonlinear Phase Equation in Pattern-Forming Systems
,”
Phys. Lett. A
,
153
(
8–9
), pp.
427
430
.
6.
Malomed, B. A.
,
Nepomnyashchy, A. A.
, and
Tribelsky, M.
,
1990
, “
Domain Boundaries in Convection Patterns
,”
Phys. Rev. A
,
42
(
12
), p.
7244
.
7.
Malomed
,
B.
,
1998
, “
Stability and Grain Boundaries in the Dispersive Newell-Whitehead-Segel Equation
,”
Phys. Scr.
,
57
(
1
), pp.
115
117
.
8.
Graham
,
R.
,
1996
, “
Systematic Derivation of a Rotationally Covariant Extension of the Two-Dimensional Newell-Whitehead-Segel Equation
,”
Phys. Rev. Lett.
,
76
(
12
), p.
2185
.
9.
Zemskov
,
E.
P.,
2014
, “
Turing Patterns and Newell-Whitehead-Segel Amplitude Equation
,”
Phys.-Usp.
,
57
(
10
), p.
1035
.
10.
Caraballo
,
T.
,
Crauel
,
H.
,
Langa
,
J. A.
, and
Robinson
,
J. C.
,
2007
, “
The Effect of Noise on the Chafee-Infante Equation: A Nonlinear Case Study
,”
Proc. Am. Math. Soc.
,
135
(
2
), pp.
373
382
.
11.
Saravanan
,
A.
, and
Magesh
,
N.
,
2013
, “
A Comparison Between the Reduced Differential Transform Method and the Adomian Decomposition Method for the Newell-Whitehead-Segel Equation
,”
J. Egyptian Math. Soc.
,
21
(
3
), pp.
259
265
.
12.
Prakash
,
A.
, and
Manoj
,
K.
,
2016
, “
He's Variational Iteration Method for the Solution of Nonlinear Newell-Whitehead-Segel Equation
,”
J. Appl. Anal. Comput.
,
6
(
3
), pp.
738
748
.
13.
Danilov
,
V. G.
,
Maslov
,
V. P.
, and
Volosov
,
K. V.
,
1995
,
Mathematical Modelling of Heat and Mass Transfer Processes
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
14.
Korkmaz
,
A.
,
2017
, “
Exact Solutions to (3 + 1) Conformable Time Fractional Jimbo-Miwa, Zakharov-Kuznetsov and Modified Zakharov-Kuznetsov Equations
,”
Commun. Theor. Phys.
,
67
(
5
), pp.
479
482
.
15.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
A New Numerical Algorithm for Fractional Fitzhugh-Nagumo Equation Arising in Transmission of Nerve Impulses
,”
Nonlinear Dyn.
,
91
(
1
), pp.
307
317
.
16.
Singh
,
J.
,
Kumar
,
D.
,
Qurashi
,
M. A.
, and
Baleanu
,
D.
,
2017
, “
A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships
,”
Entropy
,
19
(
7
), p.
375
.
17.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2017
, “
A New Analysis for Fractional Model of Regularized Long Wave Equation Arising in Ion Acoustic Plasma Waves
,”
Math. Methods Appl. Sci.
,
40
(
15
), pp.
5642
5653
.
18.
Kumar
,
D.
,
Singh
,
J.
,
Baleanu
,
D.
, and
Sushila
,
J.
,
2018
, “
Analysis of Regularized Long-Wave Equation Associated With a New Fractional Operator With Mittag-Leffler Type Kernel
,”
Phys. A: Stat. Mech. Appl.
,
492
, pp.
155
167
.
19.
Singh
,
J.
,
Rashidi
,
M. M.
,
Sushila
,
J.
, and
Kumar
,
D.
,
2017
, “
A Hybrid Computational Approach for Jeffery–Hamel Flow in Non-Parallel Walls
,”
Neural Comput. Appl.
, pp.
1
7
.
20.
Korkmaz
,
A.
,
2017
, “
Exact Solutions of Space-Time Fractional Ew and Modified Ew Equations
,”
Chaos, Solitons Fractals
,
96
, pp.
132
138
.
21.
Korkmaz
,
A.
,
2018
, “
On the Wave Solutions of Conformable Fractional Evolution Equations
,”
Commun. Ser. A1: Math. Stat.
,
67
(
1
), pp.
68
79
.
22.
Rezazadeh
,
H.
,
Korkmaz
,
A.
,
Eslami
,
M.
,
Vahidi
,
J.
, and
Asghari
,
R.
,
2018
, “
Traveling Wave Solution of Conformable Fractional Generalized Reaction Duffing Model by Generalized Projective Riccati Equation Method
,”
Opt. Quantum Electron.
,
50
(
3
), p.
150
.
23.
Yan
,
C.
,
1996
, “
A Simple Transformation for Nonlinear Waves
,”
Phys. Lett. A
,
224
(
1–2
), pp.
77
84
.
You do not currently have access to this content.