We study the stability of a pre-tensioned, heavy cable traveling vertically against gravity at a constant speed. The cable is modeled as a slender beam incorporating rotary inertia. Gravity modifies the tension along the traveling cable and introduces spatially varying coefficients in the equation of motion, thereby precluding an analytical solution. The onset of instability is determined by employing both the Galerkin method with sine modes and finite element (FE) analysis to compute the eigenvalues associated with the governing equation of motion. A spectral stability analysis is necessary for traveling cables where an energy stability analysis is not comprehensive, because of the presence of gyroscopic terms in the governing equation. Consistency of the solution is checked by direct time integration of the governing equation of motion with specified initial conditions. In the stable regime of operations, the rate of change of total energy of the system is found to oscillate with bounded amplitude indicating that the system, although stable, is nonconservative. A comprehensive stability analysis is carried out in the parameter space of traveling speed, pre-tension, bending rigidity, external damping, and the slenderness ratio of the cable. We conclude that pre-tension, bending rigidity, external damping, and slenderness ratio enhance the stability of the traveling cable while gravity destabilizes the cable.

References

References
1.
Sack
,
R. A.
,
1954
, “
Transverse Oscillations in Travelling Strings
,”
Br. J. Appl. Phys.
,
5
(
6
), p.
224
.
2.
Miranker
,
W. L.
,
1960
, “
The Wave Equation in a Medium in Motion
,”
IBM J. Res. Dev.
,
4
(
1
), pp.
36
42
.
3.
Swope
,
R. D.
, and
Ames
,
W. F.
,
1963
, “
Vibrations of a Moving Threadline
,”
J. Franklin Inst.
,
275
(
1
), pp.
36
55
.
4.
Mote
,
C. D.
,
1965
, “
A Study of Band Saw Vibrations
,”
J. Franklin Inst.
,
279
(
6
), pp.
430
444
.
5.
Mote
,
C. D.
,
1966
, “
On the Nonlinear Oscillation of an Axially Moving String
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
463
464
.
6.
Barakat
,
R.
,
1968
, “
Transverse Vibrations of a Moving Thin Rod
,”
J. Acoust. Soc. Am.
,
43
(
3
), pp.
533
539
.
7.
Thurman
,
A. L.
, and
Mote
,
C. D.
,
1969
, “
Free, Periodic, Nonlinear Oscillation of an Axially Moving Strip
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
83
91
.
8.
Rogge
,
T. R.
,
1972
, “
Equations of Motion for Flexible Cables
,”
J. Aircr.
,
9
(
11
), pp.
799
800
.
9.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1989
, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
,
85
(
3
), pp.
1365
1368
.
10.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
738
744
.
11.
Wickert
,
J. A.
,
1992
, “
Non-Linear Vibration of a Traveling Tensioned Beam
,”
Int. J. Nonlinear Mech.
,
27
(
3
), pp.
503
517
.
12.
Ziegler
,
H.
,
2013
,
Principles of Structural Stability
, Vol.
35
,
Birkhäuser
, Basel, Switzerland.
13.
Öz
,
H.
,
Pakdemirli
,
M.
, and
Boyaci
,
H.
,
2001
, “
Non-Linear Vibrations and Stability of an Axially Moving Beam With Time-Dependent Velocity
,”
Int. J. Nonlinear Mech.
,
36
(
1
), pp.
107
115
.
14.
Mockensturm
,
E. M.
, and
Guo
,
J.
,
2005
, “
Nonlinear Vibration of Parametrically Excited, Viscoelastic, Axially Moving Strings
,”
ASME J. Appl. Mech.
,
72
(
3
), pp.
374
380
.
15.
Farokhi
,
H.
,
Ghayesh
,
M. H.
, and
Hussain
,
S.
,
2016
, “
Three-Dimensional Nonlinear Global Dynamics of Axially Moving Viscoelastic Beams
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011007
.
16.
Ghayesh
,
M.
, and
Farokhi
,
H.
,
2015
, “
Thermo-Mechanical Dynamics of Three-Dimensional Axially Moving Beams
,”
Nonlinear Dyn.
,
80
(
3
), pp.
1643
1660
.
17.
Farokhi
,
H.
,
Ghayesh
,
M.
, and
Amabili
,
M.
,
2013
, “
In-Plane and Out-of-Plane Nonlinear Dynamics of an Axially Moving Beam
,”
Chaos, Solitons Fractals
,
54
, pp.
101
121
.
18.
Pakdemirli
,
M.
, and
Ulsoy
,
A.
,
1997
, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
(
5
), pp.
815
832
.
19.
Ghayesh
,
M.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Three-Dimensional Nonlinear Size-Dependent Behaviour of Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
71
, pp.
1
14
.
20.
Farokhi
,
H.
,
Ghayesh
,
M.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp.
11
23
.
21.
Ghayesh
,
M.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Microscale Beam Based on the Modified Couple Stress Theory
,”
Composites Part B
,
50
, pp.
318
324
.
22.
Ghayesh
,
M.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Two-Dimensional Nonlinear Dynamics of an Axially Moving Viscoelastic Beam With Time-Dependent Axial Speed
,”
Chaos, Solitons Fractals
,
52
, pp.
8
29
.
23.
Hagedorn
,
P.
, and
DasGupta
,
A.
,
2007
,
Vibrations and Waves in Continuous Mechanical Systems
,
Wiley
, Hoboken, NJ.
24.
Banichuk
,
N.
,
Jeronen
,
J.
,
Neittaanmäki
,
P.
,
Saksa
,
T.
, and
Tuovinen
,
T.
,
2014
,
Mechanics of Moving Materials. Solid Mechanics and Its Applications
,
Springer International Publishing
, Cham, Switzerland.
25.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
2nd ed.
,
Dover Publications
, Mineola, NY.
26.
Meirovitch
,
L.
, and
Hagedorn
,
P.
,
1994
, “
A New Approach to the Modelling of Distributed Non-Self-Adjoint Systems
,”
J. Sound Vib.
,
178
(
2
), pp.
227
241
.
27.
Bathe
,
K. J.
,
2014
,
Finite Element Procedures
,
Prentice Hall
, Delhi, India.
You do not currently have access to this content.