To synchronize quadratic chaotic systems, a synchronization scheme based on simultaneous estimation of nonlinear dynamics (SEND) is presented in this paper. To estimate quadratic terms, a compensator including Jacobian matrices in the proposed master–slave schematic is considered. According to the proposed control law and Lyapunov theorem, the asymptotic convergence of synchronization error to zero is proved. To identify unknown parameters, an adaptive mechanism is also used. Finally, a number of numerical simulations are provided for the Lorenz system and a memristor-based chaotic system to verify the proposed method.

References

References
1.
Weiss
,
J. N.
,
Garfinkel
,
A.
,
Spano
,
M. L.
, and
Ditto
,
W. L.
,
1994
, “
Chaos and Chaos Control in Biology
,”
J. Clin. Invest
,
93
(
4
), pp.
1355
1360
.
2.
Goedgebuer
,
J. P.
,
Larger
,
L.
, and
Porte
,
H.
,
1998
, “
Optical Cryptosystem Based on Synchronization of Hyperchaos Generated by a Delayed Feedback Tunable Laser Diode
,”
Phys. Rev. Lett.
,
80
(
10
), pp.
2249
2252
.
3.
Aihara
,
K.
,
Takabe
,
T.
, and
Toyoda
,
M.
,
1990
, “
Chaotic Neural Networks
,”
Phys. Lett. A.
,
144
(
6–7
), pp.
333
340
.
4.
Schiff
,
S. J.
,
Jerger
,
K.
,
Duong
,
D. H.
,
Chang
,
T.
,
Spano
,
M. L.
, and
Ditto
,
W. L.
,
1994
, “
Controlling Chaos in the Brain
,”
Nature
,
370
(
6491
), pp.
615
620
.
5.
Ruiz-Herrera
,
A.
,
2013
, “
Chaos in Delay Differential Equations With Applications in Population Dynamics
,”
Discrete. Cont. Dyn. Syst.
,
33
(
4
), pp.
1633
1644
.
6.
Alvarez
,
G.
, and
Li
,
S.
,
2006
, “
Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems
,”
Int. J. Bifurcation Chaos
,
16
(
8
), pp.
2129
2151
.
7.
Gao
,
T.
, and
Chen
,
Z.
,
2008
, “
A New Image Encryption Algorithm Based on Hyper-Chaos
,”
Phys. Lett. A.
,
372
(
4
), pp.
394
400
.
8.
Wang
,
X. Y.
,
Yang
,
L.
,
Liu
,
R.
, and
Kadir
,
A.
,
2010
, “
A Chaotic Image Encryption Algorithm Based on Perceptron Model
,”
Nonlinear. Dyn.
,
62
(
3
), pp.
615
621
.
9.
Li
,
Y.
,
Wang
,
C.
, and
Chen
,
H.
,
2017
, “
A Hyper-Chaos-Based Image Encryption Algorithm Using Pixel-Level Permutation and Bit-Level Permutation
,”
Opt. Laser. Eng.
,
90
, pp.
238
246
.
10.
Zarei
,
A.
, and
Tavakoli
,
S.
,
2017
, “
Design and Control of a Multi-Wing Dissipative Chaotic System
,”
Int. J. Dyn. Cont.
,
6
(1), 140–153.
11.
Bao
,
J.
, and
Yang
,
Q.
,
2010
, “
Complex Dynamics in the Stretch-Twist-Fold Flow
,”
Nonlinear. Dyn.
,
61
(
4
), pp.
773
781
.
12.
Shen
,
C.
,
Yu
,
S.
,
Lu
,
J.
, and
Chen
,
G.
,
2014
, “
A Systematic Methodology for Constructing Hyperchaotic Systems With Multiple Positive Lyapunov Exponents and Circuit Implementation
,”
IEEE. Trans. Circuits. Syst. I: Regular Papers.
,
61
(
3
), pp.
854
864
.
13.
Chen
,
L.
,
Pan
,
W.
,
Wang
,
K.
,
Wu
,
R.
,
Machado
,
J. T.
, and
Lopes
,
A. M.
,
2017
, “
Generation of a Family of Fractional Order Hyper-Chaotic Multi-Scroll Attractors
,”
Chaos, Solitons Fractals
,
105
, pp.
244
255
.
14.
Yang
,
Q.
,
Osman
,
W. M.
, and
Chen
,
C.
,
2015
, “
A New 6D Hyperchaotic System With Four Positive Lyapunov Exponents Coined
,”
Int. J. Bifurcation Chaos
,
25
(
4
), p.
1550060
.
15.
Zarei
,
A.
,
2015
, “
Complex Dynamics in a 5-D Hyper-Chaotic Attractor With Four-Wing, One Equilibrium and Multiple Chaotic Attractors
,”
Nonlinear. Dyn.
,
81
(
1–2
), pp.
585
605
.
16.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic System
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.
17.
Khan
,
A.
, and
Tyagi
,
A.
,
2017
, “
Hybrid Projective Synchronization Between Two Identical New 4-D Hyper-Chaotic Systems Via Active Control Method
,”
Int. J. Nonlinear. Sci.
,
23
(
3
), pp.
142
150
.
18.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Synchronization of Chaotic Fractional-Order Systems Via Active Sliding Mode Controller
,”
Phys. A.
,
387
(
1
), pp.
57
70
.
19.
Chen
,
M.
,
Wu
,
Q.
, and
Jiang
,
C.
,
2012
, “
Disturbance-Observer-Based Robust Synchronization Control of Uncertain Chaotic Systems
,”
Nonlinear. Dyn.
,
70
(
4
), pp.
2421
2432
.
20.
Mohammadpour
,
S.
, and
Binazadeh
,
T.
,
2018
, “
Robust Adaptive Synchronization of Chaotic Systems With Nonsymmetric Input Saturation Constraints
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011005
.
21.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2010
, “
Adaptive Sliding Mode Control of Chaotic Dynamical Systems With Application to Synchronization
,”
Math. Comput. Simulat.
,
80
(
12
), pp.
2245
2257
.
22.
Vasegh
,
N.
, and
Majd
,
V. J.
,
2006
, “
Adaptive Fuzzy Synchronization of Discrete-Time Chaotic Systems
,”
Chaos, Solitons Fractals
,
28
(
4
), pp.
1029
1036
.
23.
Wang
,
H. W.
, and
Gu
,
H.
,
2008
, “
Chaotic Synchronization in the Presence of Disturbances Based on an Orthogonal Function Neural Network
,”
Asian. J. Control.
,
10
(
4
), pp.
470
477
.
24.
Boutayeb
,
M.
,
Darouach
,
M.
, and
Rafaralahy
,
H.
,
2002
, “
Generalized State-Space Observers for Chaotic Synchronization and Secure Communication
,”
IEEE. Trans. Circuits. Syst. I: Regular Papers.
,
49
(
3
), pp.
345
349
.
25.
Wang
,
X. Y.
, and
Wang
,
M. J.
,
2009
, “
Chaotic Secure Communication Scheme Based on Observer
,”
Commun. Nonlinear. Sci. Num. Simul.
,
14
(
4
), pp.
1502
1508
.
26.
Wang
,
H.
,
Zhu
,
X. J.
,
Gao
,
S. W.
, and
Chen
,
Z. Y.
,
2011
, “
Singular Observer Approach for Chaotic Synchronization and Private Communication
,”
Commun. Nonlinear. Sci. Num. Simul.
,
16
(
3
), pp.
1517
1523
.
27.
Azarang
,
A.
,
Miri
,
M.
,
Kamaei
,
S.
, and
Asemani
,
M. H.
,
2018
, “
Nonfragile Fuzzy Output Feedback Synchronization of a New Chaotic System: Design and Implementation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011008
.
28.
Wang
,
P.
,
Li
,
D.
,
Wu
,
X.
,
,
J.
, and
Yu
,
X.
,
2011
, “
Ultimate Bound Estimation of a Class of High Dimensional Quadratic Autonomous Dynamical Systems
,”
Int. J. Bifurcation Chaos
,
21
(
9
), pp.
2679
2694
.
29.
Wang
,
P.
,
Zhang
,
Y.
,
Tan
,
S.
, and
Wan
,
L.
,
2013
, “
Explicit Ultimate Bound Sets of a New Hyperchaotic System and Its Application in Estimating the Hausdorff Dimension
,”
Nonlinear. Dyn.
,
74
(
1–2
), pp.
133
142
.
30.
Zarei
,
A.
, and
Tavakoli
,
S.
,
2016
, “
Hopf Bifurcation Analysis and Ultimate Bound Estimation of a New 4-D Quadratic Autonomous Hyper-Chaotic System
,”
Appl. Math. Comput.
,
291
, pp.
323
339
.
31.
Pogromsky
,
A. Y.
,
Santoboni
,
G.
, and
Nijmeijer
,
H.
,
2003
, “
An Ultimate Bound on the Trajectories of the Lorenz System and Its Applications
,”
Nonlinearity.
,
16
(
5
), pp.
1597
1605
.
32.
Li
,
D.
,
Lu
,
J. A.
,
Wu
,
X.
, and
Chen
,
G.
,
2006
, “
Estimating the Ultimate Bound and Positively Invariant Set for the Lorenz System and a Unified Chaotic System
,”
J. Math. Anal. Appl.
,
323
(
2
), pp.
844
853
.
33.
Nik
,
H. S.
,
Effati
,
S.
, and
Saberi-Nadjafi
,
J. A. F. A. R.
,
2015
, “
Ultimate Bound Sets of a Hyperchaotic System and Its Application in Chaos Synchronization
,”
Complexity
,
20
(
4
), pp.
30
44
.
34.
Li
,
Q.
,
Zeng
,
H.
, and
Li
,
J.
,
2015
, “
Hyperchaos in a 4D Memristive Circuit With Infinitely Many Stable Equilibria
,”
Nonlinear. Dyn.
,
79
(
4
), pp.
2295
2308
.
35.
Chen
,
M.
,
Li
,
M.
,
Yu
,
Q.
,
Bao
,
B.
,
Xu
,
Q.
, and
Wang
,
J.
,
2015
, “
Dynamics of Self-Excited Attractors and Hidden Attractors in Generalized Memristor-Based Chuas Circuit
,”
Nonlinear. Dyn.
,
81
(
1–2
), pp.
215
226
.
36.
Ma
,
J.
,
Chen
,
Z.
,
Wang
,
Z.
, and
Zhang
,
Q.
,
2015
, “
A Four-Wing Hyper-Chaotic Attractor Generated From a 4-D Memristive System With a Line Equilibrium
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1275
1288
.
37.
Njitacke
,
Z. T.
,
Kengne
,
J.
,
Tapche
,
R. W.
, and
Pelap
,
F. B.
,
2018
, “
Uncertain Destination Dynamics of a Novel Memristive 4D Autonomous System
,”
Chaos, Solitons Fractals
,
107
, pp.
177
185
.
38.
Liao
,
T. L.
,
1998
, “
Adaptive Synchronization of Two Lorenz Systems
,”
Chaos, Solitons Fractals
,
9
(
9
), pp.
1555
1561
.
39.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
You do not currently have access to this content.