This paper deals with the issue of robustness in control of robots using the proportional plus derivative (PD) controller and the augmented PD controller. In the literature, a variety of PD and model-based controllers for multilink serial manipulator have been claimed to be asymptotically stable for trajectory tracking, in the sense of Lyapunov, as long as the controller gains are positive. In this paper, we first establish that for simple PD controllers, the criteria of positive controller gains are insufficient to establish asymptotic stability, and second that for the augmented PD controller the criteria of positive controller gains are valid only when there is no uncertainty in the model parameters. We show both these results for a simple planar two-degrees-of-freedom (2DOFs) robot with two rotary (R) joints, following a desired periodic trajectory, using the Floquet theory. We provide numerical simulation results which conclusively demonstrate the same.

References

References
1.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Udwadia
,
F. E.
, and
Koganti
,
P. B.
,
2015
, “
Dynamics and Control of a Multi-Body Planar Pendulum
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
845
866
.
3.
Udwadia
,
F. E.
, and
Koganti
,
P. B.
,
2015
, “
Optimal Stable Control for Nonlinear Dynamical Systems: An Analytical Dynamics Based Approach
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
547
562
.
4.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2014
, “
Control of Uncertain Nonlinear Multibody Mechanical Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041020
.
5.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2014
, “
A New Approach to the Tracking Control of Uncertain Nonlinear Multi-Body Mechanical Systems
,”
Nonlinear Approaches in Engineering Applications
, Vol.
2
,
Springer
,
New York
, pp.
101
136
.
6.
Antonio
,
L.
,
Erjen
,
L.
, and
Henk
,
N.
,
2000
, “
Global Asymptotic Stability of Robot Manipulators With Linear PID and PI2D Control
,”
Sacta
,
3
(
2
), pp.
138
149
.http://mate.tue.nl/mate/pdfs/4015.pdf
7.
Rafael
,
K. A.
,
1995
, “
Tuning Procedure for Stable PID Control of Robot Manipulators
,”
Robotica
,
13
(
2
), pp.
141
148
.
8.
Jose
,
A. H.
, and
Wen
,
Y.
,
2000
, “
A High-Gain Observer-Based PD Control for Robot Manipulator
,”
American Control Conference
(
ACC
), Chicago, IL, June 28–30, pp.
2518
2522
.
9.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Zu
,
G.
,
1997
, “
Non-Model-Based Position Control of a Planar Multi-Link Flexible Robot
,”
Mech. Syst. Signal Process.
,
11
(
5
), pp.
707
724
.
10.
Amol
,
A. K.
,
Gopinathan
,
L.
, and
Goshaidas
,
R.
,
2011
, “
An Adaptive Fuzzy Controller for Trajectory Tracking of a Robot Manipulator
,”
Intell. Control Autom.
,
2
, pp.
364
370
.
11.
Antonio
,
Y.
,
Victor
,
S.
, and
Javier
,
M. V.
,
2011
, “
Global Asymptotic Stability of the Classical PID Controller by Considering Saturation Effects in Industrial Robots
,”
Int. J. Adv. Rob. Syst.
,
8
(
4
), pp.
34
42
.
12.
Vincente
,
P. G.
,
Suguru
,
A.
,
Yun
,
H. L.
,
Gerhard
,
H.
, and
Prasad
,
A.
,
2003
, “
Dynamic Sliding PID Control for Tracking of Robot Manipulators: Theory and Experiments
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
967
976
.
13.
Ruvinda
,
G.
, and
Fathi
,
G.
,
1997
, “
PD Control of Closed-Chain Mechanical Systems: An Experimental Study
,”
Fifth IFAC Symposium of Robot Control
, Nantes, France, Sept. 3–5, pp.
79
84
.
14.
Chien
,
H. L.
,
2007
, “
Lyapunov-Based Control of a Robot and Mass-Spring System Undergoing an Impact Collision
,”
MS thesis
, University of Florida, Gainesville, FL.http://ncr.mae.ufl.edu/thesis/chienhao.pdf
15.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
16.
Chen
,
Q.
,
Chen
,
H.
,
Wang
,
Y.
, and
Woo
,
P.
,
2000
, “
Global Stability Analysis for Some Trajectory-Tracking Control Schemes of Robotic Manipulators
,”
American Control Conference
(
ACC
), Chicago, IL, June 28–30, pp. 3343–3347.
17.
Lankalapalli
,
S.
, and
Ghosal
,
A.
,
1997
, “
Chaos in Robot Control Equations
,”
Int. J. Bifurcation Chaos
,
7
(
3
), pp.
707
720
.
18.
Sandeep
,
R. B.
, and
Ghosal
,
A.
,
2016
, “
Asymptotic Stability and Chaotic Motions in Trajectory Following Feedback Controlled Robots
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051012
.
19.
Ghosal
,
A.
,
2006
,
Robotics: Fundamental Concepts and Analysis
,
Oxford University Press
,
Oxford, UK
.
20.
Ravishankar
,
A. S.
, and
Ghosal
,
A.
,
1999
, “
Nonlinear Dynamics and Chaotic Motions in Feedback-Controlled Two and Three-Degree-of-Freedom Robots
,”
Int. J. Rob. Res.
,
18
(
1
), pp.
93
108
.
21.
Coddington
,
E. A.
, and
Carlson
,
R.
,
1997
,
Linear Ordinary Differential Equations
,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
22.
Bittanti
,
S.
, and
Colaneri
,
P.
,
2009
,
Periodic Systems Filtering and Control, Communications and Control Engineering
,
Springer-Verlag
,
London
.
23.
Thomas
,
O.
,
Lazarus
,
A.
, and
Touze
,
C.
,
2010
, “
A Harmonic-Based Method for Computing the Stability of Periodic Oscillations of Non-Linear Structural Systems
,”
ASME
Paper No. DETC2010-28407.
24.
Kurt
,
L.
,
2001
, “
Improved Numerical Floquet Multipliers
,”
Int. J. Bifurcation Chaos
,
11
(
9
), pp.
2389
2410
.
25.
Slane
,
J.
, and
Tragesser
,
S.
,
2011
, “
Analysis of Periodic Nonautonomous Inhomogeneous Systems
,”
Nonlinear Dyn. Syst. Theory
,
11
(
2
), pp.
183
198
.http://sunrise-0014438.e-ndst.kiev.ua/v11n2/8(35).pdf
26.
Thomsen
,
J. J.
,
2003
,
Vibrations and Stability: Advanced Theory, Analysis and Tools
,
Springer Verlag
,
Berlin
.
27.
Parker
,
T. S.
, and
Chua
,
L. O.
,
1989
,
Practical Numerical Algorithms for Chaotic Systems
,
Springer Verlag
,
New York
.
You do not currently have access to this content.