The robust control for a class of disturbed fractional-order systems is presented in this paper. The proposed controller considers a dynamic observer to exactly compensate for matched disturbances in finite time, and a procedure to compensate for unmatched disturbances is then derived. The proposed disturbance observer is built upon continuous fractional sliding modes, producing a fractional-order reaching phase, leading to a continuous control signal, yet able to reject for some continuous but not necessarily differentiable disturbances. Numerical simulations and comparisons are presented to highlight the reliability of the proposed scheme.

References

References
1.
Ohishi
,
K.
,
Nakao
,
M.
,
Ohnishi
,
K.
, and
Miyachi
,
K.
,
1987
, “
Microprocessor-Controlled DC Motor for Load-Insensitive Position Servo System
,”
IEEE Trans. Ind. Electron.
,
34
(
1
), pp.
44
49
.
2.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W. H.
, and
Chen
,
X.
,
2014
,
Disturbance Observer-Based Control: Methods and Applications
,
CRC Press
,
Boca Raton, FL
.
3.
Chen
,
W. H.
,
Yang
,
J.
,
Guo
,
L.
, and
Li
,
S.
,
2016
, “
Disturbance-Observer-Based Control and Related Methods—An Overview
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1083
1095
.
4.
Chen
,
W. H.
,
2004
, “
Disturbance Observer Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
706
710
.
5.
Iwasaki
,
M.
,
Shibata
,
T.
, and
Matsui
,
N.
,
1999
, “
Disturbance-Observer-Based Nonlinear Friction Compensation in Table Drive System
,”
IEEE/ASME Trans. Mechatronics
,
4
(
1
), pp.
3
8
.
6.
Eom
,
K. S.
,
Suh
,
I. H.
,
Chung
,
W. K.
, and
Oh
,
S. R.
,
1998
, “
Disturbance Observer Based Force Control of Robot Manipulator Without Force Sensor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 20, pp.
3012
3017
.
7.
Murakami
,
T.
,
Nakamura
,
R.
,
Yu
,
F.
, and
Ohnishi
,
K.
,
1993
, “
Force Sensorless Impedance Control by Disturbance Observer
,”
IEEE
Power Conversion Conference
, Yokohama, Japan, Apr. 19–21, pp.
352
357
.
8.
Katsura
,
S.
, and
Matsumto
,
Y.
,
2007
, “
Modeling of Force Sensing and Validation of Disturbance Observer for Force Control
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
530
538
.
9.
Gupta
,
A.
, and
O'Malley
,
M. K.
,
2011
, “
Disturbance-Observer-Based Force Estimation for Haptic Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
1
), p.
014505
.
10.
Wang
,
H.
, and
Chen
,
M.
,
2016
, “
Trajectory Tracking Control for an Indoor Quadrotor UAV Based on the Disturbance Observer
,”
Trans. Inst. Meas. Control
,
38
(
6
), pp.
675
692
.
11.
Yang
,
J.
,
Li
,
S.
, and
Yu
,
X.
,
2013
, “
Sliding Mode Control for Systems With Mismatched Uncertainties Via Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
160
169
.
12.
Mohammadi
,
A.
,
Tavakoli
,
M.
,
Marquez
,
H. J.
, and
Hashemzadeh
,
F.
,
2013
, “
Nonlinear Disturbance Observer Design for Robotic Manipulators
,”
Control Eng. Pract.
,
21
(
3
), pp.
253
267
.
13.
Liu
,
L. P.
,
Fu
,
Z. M.
, and
Song
,
X. N.
,
2012
, “
Sliding Mode Control With Disturbance Observer for a Class of Nonlinear Systems
,”
Int. J. Autom. Comput.
,
9
(
5
), pp.
487
491
.
14.
Chen
,
X.
,
Komada
,
S.
, and
Fukuda
,
T.
,
2000
, “
Design of a Nonlinear Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
47
(
2
), pp.
429
437
.
15.
Chen
,
W. H.
,
Ballance
,
D. J.
,
Gawthrop
,
P. J.
, and
O'Reilly
,
J.
,
2000
, “
A Nonlinear Disturbance Observer for Robotic Manipulators
,”
IEEE Trans. Ind. Electron.
,
47
(
4
), pp.
932
938
.
16.
Pashaei
,
S.
, and
Badamchizadeh
,
M.
,
2016
, “
A New Fractional-Order Sliding Mode Controller Via a Nonlinear Disturbance Observer for a Class of Dynamical Systems With Mismatched Disturbances
,”
ISA Trans.
,
63
, pp.
39
48
.
17.
Chen
,
M.
,
Shu-Yi
,
S.
,
Shi
,
P.
, and
Shi
,
Y.
,
2017
, “
Disturbance-Observer-Based Robust Synchronization Control for a Class of Fractional-Order Chaotic Systems
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
64
(
4
), pp.
417
421
.
18.
Lin
,
C.
,
Chen
,
B.
,
Shi
,
P.
, and
Yu
,
J. P.
,
2018
, “
Necessary and Sufficient Conditions of Observer-Based Stabilization for a Class of Fractional-Order Descriptor Systems
,”
Syst. Control Lett.
,
112
, pp.
31
35
.
19.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
20.
Samko
,
S.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives. Theory and Applications
,
Gordon and Breach
,
Yverdon, Switzerland
.
21.
Song
,
X.
,
Song
,
S.
, and
Tejado
,
I.
,
2016
, “
Fuzzy Adaptive Function Projective Combination Synchronization of a Class of Fractional-Order Chaotic and Hyperchaotic Systems
,”
Int. J. Innovative Comput., Inf. Control
,
12
(
4
), pp.
1317
1332
.http://www.ijicic.org/ijicic-120420.pdf
22.
Efe
,
M. Ö.
,
2010
, “
Fractional Order Sliding Mode Control With Reaching Law Approach
,”
Turk. J. Electr. Eng. Comput. Sci.
,
18
(
5
), pp.
731
748
.
23.
Efe
,
M. Ö.
,
2011
, “
Integral Sliding Mode Control of a Quadrotor With Fractional Order Reaching Dynamics
,”
Trans. Inst. Meas. Control
,
33
(
8
), pp.
985
1003
.
24.
Hu
,
W.
,
Ding
,
D.
, and
Wang
,
N.
,
2016
, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041003
.
25.
Alaviyan-Shahri
,
E. S.
,
Alfi
,
A.
, and
Tenreiro-Machado
,
J. A.
,
2016
, “
Stabilization of Fractional-Order Systems Subject to Saturation Element Using Fractional Dynamic Output Feedback Sliding Mode Control
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031014
.
26.
Duc
,
T. M.
,
Hoa
,
N. V.
, and
Dao
,
T. P.
,
2018
, “
Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031004
.
27.
Muñoz-Vázquez
,
A. J.
,
Parra-Veg
,
V.
,
Sánchez-Orta
,
A.
, and
Romero-Galván
,
G.
,
2017
, “
Output Feedback Finite-Time Stabilization of Systems Subject to Hölder Disturbances Via Continuous Fractional Sliding Modes
,”
Math. Probl. Eng.
,
2017
, p. 3146231.
28.
Muñoz-Vázquez
,
A. J.
,
Parra-Veg
,
V.
, and
Sánchez-Orta
,
A.
,
2017
, “
A Novel Continuous Fractional Sliding Mode Control
,”
Int. J. Syst. Sci.
,
48
(
13
), pp.
2901
2908
.
29.
Muñoz-Vázquez
,
A. J.
,
Parra-Vega
,
V.
,
Sánchez-Orta
,
A.
, and
Romero-Galván
,
G.
,
2017
, “
Finite-Time Disturbance Observer Via Continuous Fractional Sliding Modes
,”
Trans. Inst. Meas. Control
, epub.
30.
Pisano
,
A.
,
Rapaic
,
M.
,
Jelecic
,
Z.
, and
Usai
,
E.
,
2010
, “
Sliding Mode Control Approaches to the Robust Regulation of Linear Multivariable Fractional-Order Dynamics
,”
Int. J. Robust Nonlinear Control
,
20
(
18
), pp.
2045
2056
.
31.
Pisano
,
A.
,
Rapaic
,
M.
,
Usai
,
E.
, and
Jelicic
,
Z.
,
2012
, “
Continuous Finite-Time Stabilization for Some Classes of Fractional Order Dynamics
,”
IEEE International Workshop on Variable Structure Systems
(
VSS
), Mumbai, India, Jan. 12–14, pp.
16
21
.
32.
Jakovljević
,
B.
,
Pisano
,
A.
,
Rapaic
,
M. R.
, and
Usai
,
E.
,
2015
, “
On the Sliding-Mode Control of Fractional-Order Nonlinear Uncertain Dynamics
,”
Int. J. Robust Nonlinear Control
,
26
(
4
), pp.
782
798
.
33.
Kamal
,
S.
,
Raman
,
A.
, and
Bandyopadhyay
,
B.
,
2013
, “
Finite-Time Stabilization of Fractional Order Uncertain Chain of Integrator: An Integral Sliding Mode Approach
,”
IEEE Trans. Autom. Control
,
58
(
6
), pp.
1597
1602
.
34.
Petrás
,
I.
,
2009
, “
Stability of Fractional-Order Systems With Rational Orders: A Survey
,”
Fractional Calculus Appl. Anal.
,
12
(
3
), pp.
269
298
.http://www.math.bas.bg/complan/fcaa/volume12/fcaa123/IvoPetras_FCAA_12_3.pdf
35.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2009
, “
Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
36.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
37.
Zhang
,
F.
,
Li
,
C.
, and
Chen
,
Y. Q.
,
2011
, “
Asymptotical Stability of Nonlinear Fractional Differential System With Caputo Derivative
,”
Int. J. Differ. Equations
,
2011
, p. 635165.
38.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
951
2957
.
39.
Duarte-Mermoud
,
M. A.
,
Aguila-Camacho
,
N.
,
Gallegos
,
J. A.
, and
Castro-Linares
,
R.
,
2015
, “
Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
650
659
.
40.
Muñoz-Vázquez
,
A. J.
,
Parra-Vega
,
V.
,
Sánchez-Orta
,
A.
, and
Romero-Galván
,
G.
,
2018
, “
Quadratic Lyapunov Functions for Stability Analysis in Fractional-Order Systems With Not Necessarily Differentiable Solutions
,”
Syst. Control Lett.
,
116
, pp.
15
19
.
41.
Miller
,
K. S.
, and
Samko
,
S.
,
1997
, “
A Note on the Complete Monotonicity of the Generalized Mittag-Leffler Function
,”
Real Anal. Exch.
,
23
(
2
), pp.
753
755
.https://projecteuclid.org/euclid.rae/1337001380
42.
Schiessel
,
H.
,
Metzler
,
R.
,
Blumen
,
A.
, and
Nonnenmacher
,
T. F.
,
1995
, “
Generalized Viscoelastic Models: Their Fractional Equations With Solutions
,”
J. Phys. A: Math. Gen.
,
28
(
23
), pp.
6567
6584
.
43.
Iftikhar
,
M.
,
Riu
,
D.
,
Druart
,
F.
,
Rosini
,
S.
,
Bultel
,
Y.
, and
Retière
,
N.
,
2006
, “
Dynamic Modeling of Proton Exchange Membrane Fuel Cell Using Non-Integer Derivatives
,”
J. Power Sources
,
160
(
2
), pp.
1170
1182
.
44.
Magin
,
R. L.
,
2010
, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1586
1593
.
45.
Humphrey
,
J.
,
Schuler
,
C.
, and
Rubinsky
,
B.
,
1992
, “
On the Use of the Weierstrass-Mandelbrot Function to Describe the Fractal Component of Turbulent Velocity
,”
Fluid Dyn. Res.
,
9
(
1–3
), pp.
81
95
.
46.
Machado
,
J. T.
,
2013
, “
Fractional Order Modelling of Dynamic Backlash
,”
Mechatronics
,
23
(
7
), pp.
741
745
.
47.
Mandelbrot
,
B. B.
, and
Van Ness
,
J. W.
,
1968
, “
Fractional Brownian Motions, Fractional Noises and Applications
,”
SIAM Rev.
,
10
(
4
), pp.
422
437
.
48.
Carlson
,
G.
, and
Halijak
,
C.
,
1964
, “
Approximation of Fractional Capacitors (1/s)(1∕n) by a Regular Newton Process
,”
IEEE Trans. Circuit Theory
,
11
(
2
), pp.
210
213
.
49.
Westerlund
,
S.
,
1991
, “
Dead Matter Has Memory!
,”
Phys. Scr.
,
43
(
2
), pp.
174
179
.
50.
Matignon, D.
, 1998, “
Stability Properties for Generalized Fractional Differential Systems
,”
ESAIM: Proc.
,
5
, pp. 145–158.
51.
Utkin
,
V.
,
1992
,
Sliding Modes in Control and Optimization
,
Springer-Verlag
,
Berlin
.
52.
Royden
,
H. L.
, and
Fitzpatrick
,
P.
,
1968
,
Real Analysis
,
Macmillan
,
New York
.
53.
Chen
,
Y. Q.
,
Petrás
,
I.
, and
Xue
,
D.
,
2009
, “
Fractional Order Control—A Tutorial
,”
IEEE American Control Conference
(
ACC
), St. Louis, MO, June 10–12, pp.
1397
1411
.
54.
Oustaloup
,
A.
,
Mathieu
,
B.
, and
Lanusse
,
P.
,
1995
, “
The CRONE Control of Resonant Plants: Application to a Flexible Transmission
,”
Eur. J. Control
,
1
(
2
), pp.
113
121
.
You do not currently have access to this content.