Nonlinear vibration characteristics of three-blade wind turbines are theoretically investigated. The wind turbine is modeled as a coupled system, consisting of a flexible tower with two degrees-of-freedom (2DOF), and three blades, each with a single degree of freedom (SDOF). The blades are subjected to steady winds. The wind velocity increases proportionally with height due to vertical wind shear. The natural frequency diagram is calculated with respect to the rotational speed of the wind turbine. The corresponding linear system with parametric excitation terms is analyzed to determine the rotational speeds where unstable vibrations appear and to predict at what rotational speeds the blades may vibrate at high amplitudes in a real wind turbine. The frequency response curves are then obtained by applying the swept-sine test to the equations of motion for the nonlinear system. They exhibit softening behavior due to the nonlinear restoring moments acting on the blades. Stationary time histories and their fast Fourier transform (FFT) results are also calculated. In the numerical simulations, localization phenomena are observed, where the three blades vibrate at different amplitudes. Basins of attraction (BOAs) are also calculated to examine the influence of a disturbance on the appearance of localization phenomena.

References

References
1.
Ishihara
,
T.
,
Yamaguchi
,
A.
,
Takahara
,
K.
,
Mekaru
,
T.
, and
Matsuura
,
S.
,
2005
, “
An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003
,”
Sixth Asia-Pacific Conference on Wind Engineering
(
APCWE VI
), Seoul, South Korea, Sept. 12–14, pp.
1413
1428
.http://windeng.t.u-tokyo.ac.jp/ishihara/paper/2005-5.pdf
2.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2006
, “
Non-Linear Dynamics of Wind Turbine Wings
,”
Int. J. Non-Linear Mech.
,
41
(
5
), pp.
629
643
.
3.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2007
, “
Nonlinear Parametric Instability of Wind Turbine Wings
,”
J. Sound Vib.
,
299
(
1–2
), pp.
64
82
.
4.
Kondo
,
H.
,
1988
, “
Aeroelastic Response and Stability of Wind Turbine Generators: Behavior of the Turbine Blade
,”
JSME Int. J. Ser. 3, Vib., Control Eng., Eng. Ind.
,
31
(
4
), pp.
719
726
.
5.
Chopra
,
I.
, and
Dugundji
,
J.
,
1979
, “
Non-Linear Dynamic Response of a Wind Turbine Blade
,”
J. Sound Vib.
,
63
(
2
), pp.
265
286
.
6.
Inoue
,
T.
,
Ishida
,
Y.
, and
Kiyohara
,
T.
,
2012
, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out of Plane Vibration of the Elastic Blade)
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031009
.
7.
Ichikawa
,
T.
,
1984
, “
Some Consideration on Aeroelastic Instabilities Caused by Coupling Between Propeller-Type Rotor and Its Supporting Structure
,” National Aerospace Laboratory, Tokyo, Japan, Technical Report No. TR-804 (in Japanese).
8.
Yamane
,
T.
,
1986
, “
Coupled Rotor/Tower Stability Analysis of Horizontal-Axis Wind Turbine
,”
Trans. JSME
,
52
(
477
), pp.
1514
1519
(in Japanese).
9.
Saravia
,
C. M.
,
Machado
,
S. P.
, and
Cirtunez
,
V. H.
,
2011
, “
Free Vibration and Dynamic Stability of Rotating Thin-Walled Composite Beams
,”
Eur. J. Mech. A/Solids
,
30
(
3
), pp.
431
441
.
10.
Ishida
,
Y.
,
Inoue
,
T.
, and
Nakamura
,
K.
,
2009
, “
Vibrations of a Wind Turbine Blade (Theoretical Analysis and Experiments Using a Single Rigid Blade Model)
,”
JSME J. Environ. Eng.
,
4
(
2
), pp.
443
454
.
11.
Acar
,
G.
,
Acar
,
M. A.
, and
Feeny
,
B. F.
,
2016
, “
In-Plane Blade-Hub Dynamics in Horizontal-Axis Wind-Turbines
,”
ASME
Paper No. DETC2016-60344.
12.
Chao
,
C.-P.
,
Lee
,
C.-T.
, and
Shaw
,
S. W.
,
1997
, “
Non-Unison Dynamics of Multiple Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
204
(
5
), pp.
769
794
.
13.
Ikeda
,
T.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2012
, “
Unstable Vibrations of a Wind Turbine Tower With Two Blades
,”
ASME
Paper No. DETC2012-71551.
14.
Janetzke
,
D. C.
, and
Kaza
,
K. R. V.
,
1983
, “
Whirl Flutter Analysis of a Horizontal-Axis Wind Turbine With a Two-Bladed Teetering Rotor
,”
Sol. Energy
,
31
(
2
), pp.
173
182
.
15.
Yamane
,
T.
,
Matsumiya
,
H.
,
Kawamura
,
S.
,
Muzutani
,
H.
,
Nii
,
Y.
, and
Gotanda
,
T.
,
1992
, “
Vibration Characteristics of an Experimental Wind Turbine With a 15m Teetered Rotor
,”
JSME Int. J. Ser. 3, Vib., Control Eng., Eng. Ind.
,
35
(
2
), pp.
268
273
.
16.
Motoi
,
H.
,
1993
, “
Prevention of Parametric Excitation in the Two-Bladed Wind Turbine With Teetering Mechanism
,”
Asia-Pacific Vibration Conference'93
, Kitakyushu, Japan, Nov. 14–18, pp.
450
455
.
17.
Ikeda
,
T.
,
Takahashi
,
H.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2011
, “
Vibration Control of Wind-Turbine Towers Using Tuned Liquid Dampers
,”
JSME Chugoku-Shikoku Branch 49th Conference
, pp.
149
150
(in Japanese).
18.
Ikeda
,
T.
,
Takahashi
,
H.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2011
, “
Vibration Suppression of a Wind Turbine Tower Using a Cylindrical Tuned Liquid Dampers
,”
Dyn. Des. Conf.
,
2011
, p.
537
(in Japanese).
19.
Ikeda
,
T.
,
Harata
,
Y.
,
Sumida
,
J.
, and
Ishida
,
Y.
,
2012
, “
Vibration Control of Wind-Turbine Towers by Dynamic Absorbers
,”
JSME Chugoku-Shikoku Branch 50th Conference
, Paper No. 125-1 (in Japanese).
20.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
21.
Vakakis
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.
22.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
,
7
(
1
), pp.
85
104
.
23.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
,
2008
, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
,
54
(
12
), pp.
13
29
.
24.
Olson
,
B. J.
,
Shaw
,
S. W.
,
Shi
,
C.
,
Pierre
,
C.
, and
Parker
,
R. G.
,
2014
, “
Circulant Matrices and Their Application to Vibration Analysis
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040803
.
25.
Ikeda
,
T.
,
2010
, “
Bifurcation Phenomena Caused by Multiple Nonlinear Vibration Absorbers
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021012
.
26.
Ikeda
,
T.
,
2011
, “
Nonlinear Responses of Dual-Pendulum Dynamic Absorbers
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011012
.
You do not currently have access to this content.