In this paper, a new numerical scheme is proposed for multidelay fractional order optimal control problems where its derivative is considered in the Grunwald–Letnikov sense. We develop generalized Euler–Lagrange equations that results from multidelay fractional optimal control problems (FOCP) with final terminal. These equations are created by using the calculus of variations and the formula for fractional integration by parts. The derived equations are then reduced into system of algebraic equations by using a Grunwald–Letnikov approximation for the fractional derivatives. Finally, for confirming the accuracy of the proposed approach, some illustrative numerical examples are solved.

References

References
1.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
2.
Baillie
,
R. T.
,
1996
, “
Long Memory Processes and Fractional Integration in Econometrics
,”
J. Econometrics
,
73
(
1
), pp.
5
59
.
3.
Carpinteri
,
A.
, and
Mainardi
,
F.
, eds.,
1997
,
Fractals and Fractional Calculus in Continuum Mechanics
, Vol.
378
,
Springer
, Vienna, Austria.
4.
Agrawal
,
O. P.
,
2008
, “
A Quadratic Numerical Scheme for Fractional Optimal Control Problems
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(
1
), p.
011010
.
5.
Magin, R. L.
, 2004, “
Fractional Calculus in Bioengineering
,”
Crit. Rev. Biomed. Eng.
,
32
(1), pp. 1–104.
6.
Chow
,
T. S.
,
2005
, “
Fractional Dynamics of Interfaces Between Soft-Nanoparticles and Rough Substrates
,”
Phys. Lett. A
,
342
(
1–2
), pp.
148
155
.
7.
El-Ajou
,
A.
,
Arqub
,
O. A.
, and
Al-Smadi
,
M.
,
2015
, “
A General Form of the Generalized Taylor's Formula With Some Applications
,”
Appl. Math. Comput.
,
256
(C), pp.
851
859
.
8.
El-Ajou
,
A.
,
Arqub
,
O. A.
,
Zhour
,
Z. A.
, and
Momani
,
S.
,
2013
, “
New Results on Fractional Power Series: Theories and Applications
,”
Entropy
,
15
(
12
), pp.
5305
5323
.
9.
Rahimkhani
,
P.
,
Ordokhani
,
Y.
, and
Babolian
,
E.
,
2016
, “
Fractional-Order Bernoulli Wavelets and Their Applications
,”
Appl. Math. Modell.
,
40
(
17–18
), pp.
8087
8107
.
10.
Rahimkhani
,
P.
,
Ordokhani
,
Y.
, and
Babolian
,
E.
,
2017
, “
Numerical Solution of Fractional Pantograph Differential Equations by Using Generalized Fractional-Order Bernoulli Wavelet
,”
J. Comput. Appl. Math.
,
309
, pp.
493
510
.
11.
Ma
,
J.
,
Liu
,
J.
, and
Zhou
,
Z.
,
2014
, “
Convergence Analysis of Moving Finite Element Methods for Space Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
255
, pp.
661
670
.
12.
Bhrawy
,
A. H.
,
Doha
,
E. H.
,
Baleanu
,
D.
, and
Ezz-Eldien
,
S. S.
,
2015
, “
A Spectral Tau Algorithm Based on Jacobi Operational Matrix for Numerical Solution of Time Fractional Diffusion-Wave Equations
,”
J. Comput. Phys.
,
293
, pp.
142
156
.
13.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations. NorthHolland Mathematics Studies
, Vol. 204,
Elsevier Science B.V
,
Amsterdam, The Netherlands
.
14.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Machado
,
J. T.
,
2007
,
Advances in Fractional Calculus
, Vol.
4
,
Springer
,
Dordrecht, The Netherlands
.
15.
Razminia
,
A.
,
Baleanu
,
D.
, and
Majd
,
V. J.
,
2013
, “
Conditional Optimization Problems: Fractional Order Case
,”
J. Optim. Theory Appl.
,
156
(
1
), pp.
45
55
.
16.
Ionescu
,
C.
,
Zhou
,
Y.
, and
Machado
,
J. T.
,
2016
, “
Special Issue: Advances in Fractional Dynamics and Control
,”
J. Vib. Control
,
22
(
8
), pp.
1969
1971
.
17.
Valério
,
D.
,
Trujillo
,
J. J.
,
Rivero
,
M.
,
Machado
,
J. T.
, and
Baleanu
,
D.
,
2013
, “
Fractional Calculus: A Survey of Useful Formulas
,”
Eur. Phys. J. Spec. Top.
,
222
(
8
), pp.
1827
1846
.
18.
Alaviyan Shahri
,
E. S.
,
Alfi
,
A.
, and
Tenreiro Machado
,
J. A.
,
2017
, “
Robust Stability and Stabilization of Uncertain Fractional Order Systems Subject to Input Saturation
,”
J. Vib. Control
, epub.
19.
Lu
,
J. G.
, and
Chen
,
Y.
,
2013
, “
Stability and Stabilization of Fractional-Order Linear Systems With Convex Polytopic Uncertainties
,”
Fractional Calculus Appl. Anal.
,
16
(
1
), pp.
142
157
.
20.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
323
337
.
21.
Rakhshan
,
S. A.
,
Kamyad
,
A. V.
, and
Effati
,
S.
,
2016
, “
An Efficient Method to Solve a Fractional Differential Equation by Using Linear Programming and Its Application to an Optimal Control Problem
,”
J. Vib. Control
,
22
(
8
), pp.
2120
2134
.
22.
Rakhshan
,
S. A.
,
Effati
,
S.
, and
Vahidian Kamyad
,
A.
,
2016
, “
Solving a Class of Fractional Optimal Control Problems by the Hamilton-Jacobi-Bellman Equation
,”
J. Vib. Control
,
24
(9), pp. 1741–1756.
23.
Rakhshan
,
S. A.
, and
Effati
,
S.
,
2018
, “
The Laplace-Collocation Method for Solving Fractional Differential Equations and a Class of Fractional Optimal Control Problems
,”
Optim. Control Appl. Methods
,
39
(
2
), pp.
1110
1129
.
24.
Wang
,
Q.
,
Chen
,
F.
, and
Huang
,
F.
,
2016
, “
Maximum Principle for Optimal Control Problem of Stochastic Delay Differential Equations Driven by Fractional Brownian Motions
,”
Optim. Control Appl. Methods
,
37
(
1
), pp.
90
107
.
25.
Witayakiattilerd
,
W.
,
2013
, “
Optimal Regulation of Impulsive Fractional Differential Equation With Delay and Application to Nonlinear Fractional Heat Equation
,”
J. Math. Res.
,
5
(
2
), p.
94
.
26.
Kharatishvili
,
G. L.
,
1961
, “
The Maximum Principle in the Theory of Optimal Processes Involving Delay
,”
Dokl. Akad. Nauk USSR
,
136
(1), pp.
39
42
.
27.
Wang
,
X. T.
,
2007
, “
Numerical Solutions of Optimal Control for Time Delay Systems by Hybrid of Block-Pulse Functions and Legendre Polynomials
,”
Appl. Math. Comput.
,
184
(
2
), pp.
849
856
.
28.
Khellat
,
F.
,
2009
, “
Optimal Control of Linear Time-Delayed Systems by Linear Legendre Multiwavelets
,”
J. Optim. Theory Appl.
,
143
(
1
), pp.
107
121
.
29.
Kolmanovsky
,
I. V.
, and
Maizenberg
,
T. L.
,
2001
, “
Optimal Control of Continuous-Time Linear Systems With a Time-Varying, Random Delay
,”
Syst. Control Lett.
,
44
(
2
), pp.
119
126
.
30.
Mirhosseini-Alizamini
,
S. M.
,
Effati
,
S.
, and
Heydari
,
A.
,
2015
, “
An Iterative Method for Suboptimal Control of Linear Time-Delayed Systems
,”
Syst. Control Lett.
,
82
, pp.
40
50
.
31.
Jarad
,
F.
,
Abdeljawad
,
T.
, and
Baleanu
,
D.
,
2010
, “
Fractional Variational Optimal Control Problems With Delayed Arguments
,”
Nonlinear Dyn.
,
62
(
3
), pp.
609
614
.
32.
Safaie
,
E.
,
Farahi
,
M. H.
, and
Ardehaie
,
M. F.
,
2015
, “
An Approximate Method for Numerically Solving Multi-Dimensional Delay Fractional Optimal Control Problems by Bernstein Polynomials
,”
Comput. Appl. Math.
,
34
(
3
), pp.
831
846
.
33.
Hosseinpour
,
S.
, and
Nazemi
,
A.
,
2016
, “
A Collocation Method Via Block-Pulse Functions for Solving Delay Fractional Optimal Control Problems
,”
IMA J. Math. Control Inf.
,
34
(
4
), pp.
1215
1237
.
34.
Love
,
E. R.
, and
Young
,
L. C.
,
1938
, “
On Fractional Integration by Parts
,”
Proc. London Math. Soc.
,
2
(
1
), pp.
1
35
.
35.
Lalwani
,
C. S.
, and
Desai
,
R. C.
,
1973
, “
The Maximum Principle for Systems With Time-Delay
,”
Int. J. Control
,
18
(
2
), pp.
301
304
.
36.
Marzban
,
H. R.
, and
Razzaghi
,
M.
,
2004
, “
Optimal Control of Linear Delay Systems Via Hybrid of Block-Pulse and Legendre Polynomials
,”
J. Franklin Inst.
,
341
(
3
), pp.
279
293
.
37.
Khellat
,
F.
, and
Vasegh
,
N.
,
2011
, “
Suboptimal Control of Linear Systems With Delays in State and Input by Orthonormal Basis
,”
Int. J. Comput. Math.
,
88
(
4
), pp.
781
794
.
38.
Haddadi
,
N.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2012
, “
Optimal Control of Delay Systems by Using a Hybrid Functions Approximation
,”
J. Optim. Theory Appl.
,
153
(
2
), pp.
338
356
.
39.
Nazemi
,
A.
, and
Shabani
,
M. M.
,
2014
, “
Numerical Solution of the Time-Delayed Optimal Control Problems With Hybrid Functions
,”
IMA J. Math. Control Inf.
,
32
(
3
), pp.
623
638
.
40.
Nazemi
,
A.
, and
Mansoori
,
M.
,
2016
, “
Solving Optimal Control Problems of the Time-Delayed Systems by Haar Wavelet
,”
J. Vib. Control
,
22
(
11
), pp.
2657
2670
.
You do not currently have access to this content.