Dissipation mechanisms and dissipative forces play a pivotal role in the operations and performance of human-machine interfaces and particularly in haptic systems. Dissipation is a very difficult phenomenon to model. Coulomb friction in general can be the most influential element in systems involving multiple direct contact connections such as joints with transmissions or mechanically guided components. Coulomb friction includes nonsmooth discontinuity and can induce complex dynamic behaviors. The effect of Coulomb friction is often neglected in haptics. The part of the literature which deals with friction mainly focuses on friction compensation and/or simulation of friction for haptic rendering. In this paper, the nature of the dynamic behavior caused by Coulomb friction in haptic sampled-data systems is illustrated by experiment, analysis, and simulation. It is also demonstrated that a simple model can represent this behavior and show the effects of the haptic system parameters on this dynamics.

References

References
1.
Colgate
,
J. E.
, and
Schenkel
,
G.
,
1997
, “
Passivity of a Class of Sampled-Data Systems: Application to Haptic Interfaces
,”
J. Rob. Syst.
,
14
(
1
), pp.
37
47
.
2.
Gillespie
,
R. B.
, and
Cutkosky
,
M. R.
,
1996
, “
Stable User-Specific Haptic Rendering of the Virtual Wall
,”
ASME International Mechanical Engineering Congress and Exposition
, Atlanta, GA, Nov. 17–22, pp. 397–406.https://experts.umich.edu/en/publications/stable-user-specific-haptic-rendering-of-the-virtual-wall
3.
Hulin
,
T.
,
Preusche
,
C.
, and
Hirzinger
,
G.
,
2006
, “
Stability Boundary for Haptic Rendering: Influence of Physical Damping
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
1570
1575
.
4.
Olsson
,
H.
,
Åström
,
K.
,
de Wit
,
C. C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.
5.
Richard
,
C.
, and
Cutkosky
,
M. R.
,
2002
, “
Friction Modeling and Display in Haptic Applications Involving User Performance
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp.
605
611
.
6.
Verschuren
,
T.
,
2008
, “
Friction Compensation for a Haptic Manipulator: The Hapticmaster
,” Eindhoven University of Technology, Eindhoven, The Netherlands, Technical Report No.
DCT 2008.003
.http://www.mate.tue.nl/mate/pdfs/8827.pdf
7.
Tjahjowidodo
,
T.
,
Zhu
,
K.
,
Dailey
,
W.
,
Burdet
,
E.
, and
Campolo
,
D.
,
2016
, “
Multi-Source Micro-Friction Identification for a Class of Cable-Driven Robots With Passive Backbone
,”
Mech. Syst. Signal Process.
,
80
, pp.
152
165
.
8.
Bernstein
,
N.
,
Lawrence
,
D.
, and
Pao
,
L.
,
2005
, “
Friction Modeling and Compensation for Haptic Interfaces
,”
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Pisa, Italy, Mar. 18–20, pp. 290–295.
9.
Hartog
,
J. P. D.
,
1931
, “
Forced Vibrations With Combined Coulomb and Viscous Friction
,”
Trans. Am. Soc. Mech. Eng.
,
53
, pp.
107
115
.
10.
Csernák
,
G.
,
Stépán
,
G.
, and
Shaw
,
S. W.
,
2007
, “
Sub-Harmonic Resonant Solutions of a Harmonically Excited Dry Friction Oscillator
,”
Nonlinear Dyn.
,
50
(
1–2
), pp.
93
109
.
11.
Feeny
,
B.
, and
Moon
,
F. C.
,
1994
, “
Chaos in a Forced Dry Friction Oscillator: Experiment and Numerical Modelling
,”
J. Sound Vib.
,
170
(
3
), pp.
303
323
.
12.
Armstrong-Helouvry
,
B.
,
1990
, “
Stick-Slip Arising From Stribeck Friction
,”
IEEE
International Conference on Robotics and Automation
, Cincinnati, OH, May 13–18, pp.
1377
1382
.
13.
Gil
,
J. J.
,
Sanchez
,
E.
,
Hulin
,
T.
,
Preusche
,
C.
, and
Hirzinger
,
G.
,
2007
, “
Stability Boundary for Haptic Rendering: Influence of Damping and Delay
,”
IEEE
International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
124
129
.
14.
Diolaiti
,
N.
,
Niemeyer
,
G.
,
Barbagli
,
F.
, and
Salisbury
,
J. K.
,
2006
, “
Stability of Haptic Rendering: Discretization, Quantization, Time Delay, and Coulomb Effects
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
256
268
.
15.
Miller
,
B. E.
,
Colgate
,
J. E.
, and
Freeman
,
R. A.
,
2004
, “
On the Role of Dissipation in Haptic Systems
,”
IEEE Trans. Rob.
,
20
(
4
), pp.
768
771
.
16.
Haas
,
V.
,
1953
, “
Coulomb Friction in Feedback Control Systems
,”
Trans. Am. Inst. Electr. Eng., Part II: Appl. Ind.
,
72
(
2
), pp.
119
126
.
17.
Wilson
,
R. P.
, and
Niemeyer
,
G.
,
2009
, “
Improved Multi-DOF Haptics With Spring Drive Amplifier
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
3709
3714
.
18.
Zadeh
,
M. H.
,
2009
, “
Factors Affecting Human Force Perception and Performance in Haptic-Enabled Virtual Environments
,”
Ph.D. thesis
, University of Waterloo, Waterloo, ON, Canada.https://uwspace.uwaterloo.ca/handle/10012/4456
19.
Hulin
,
T.
,
Preusche
,
C.
, and
Hirzinger
,
G.
,
2008
, “
Stability Boundary for Haptic Rendering: Influence of Human Operator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
3483
3488
.
20.
Townsend
,
W.
, and
Salisbury
,
J.
,
1987
, “
The Effect of Coulomb Friction and Stiction on Force Control
,”
IEEE
International Conference on Robotics and Automation
, Raleigh, NC, Mar., pp.
883
889
.
21.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
de Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
22.
Hulin
,
T.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2014
, “
Passivity and Stability Boundaries for Haptic Systems With Time Delay
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1297
1309
.
23.
Shayan-Amin
,
S.
,
Kovács
,
L. L.
, and
Kövecses
,
J.
,
2013
, “
The Role of Mechanical Properties on the Behaviour and Performance of Multi-Dof Haptic Devices
,”
World Haptics Conference
(
WHC
), Daejeon, South Korea, Apr. 14–17, pp.
725
730
.
24.
Kövecses
,
J.
, and
Kovács
,
L. L.
,
2015
, “
Inertia Properties and Representations in Mechanical Systems
,”
ASME
Paper No. DETC2015-47582.
25.
Stépán
,
G.
,
2001
, “
Vibrations of Machines Subjected to Digital Force Control
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
2149
2159
.
26.
Kovács
,
L. L.
,
Kövecses
,
J.
, and
Stépán
,
G.
,
2008
, “
Analysis of Effects of Differential Gain on Dynamic Stability of Digital Force Control
,”
Int. J. Non-Linear Mech.
,
43
(
6
), pp.
514
520
.
27.
Kuo
,
B. C.
,
1992
,
Digital Control Systems
,
2nd ed.
,
Oxford University Press
, New York.
28.
Moudgalya
,
K. M.
,
2007
,
Modelling of Sampled Data Systems, in Digital Control
,
Wiley
,
Chichester, UK
.
29.
Wojewoda
,
J.
,
Stefañski
,
A.
,
Wiercigroch
,
M.
, and
Kapitaniak
,
T.
,
2008
, “
Hysteretic Effects of Dry Friction: Modelling and Experimental Studies
,”
Philos. Trans. R. Soc. A
,
366
(
1866
), pp.
747
765
.
30.
Khatib
,
O.
,
1995
, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Rob. Res.
,
14
(
1
), pp.
19
36
.
31.
Samur
,
E.
,
2012
,
Performance Metrics for Haptic Interfaces
,
Springer-Verlag
,
London
.
32.
Gäfvert
,
M.
,
1999
, “
Dynamic Model Based Friction Compensation on the Furuta Pendulum
,”
IEEE
International Conference on Control Applications, Kohala Coast, HI, Aug. 22–27, pp.
1260
1265
.
You do not currently have access to this content.