Bed-load transport in natural rivers exhibits nonlinear dynamics with strong temporal memory (i.e., retention due to burial) and/or spatial memory (i.e., fast displacement driven by turbulence). Nonlinear bed-load transport is discrete in nature due to the discontinuity in the sediment mass density and the intermittent motion of sediment along river beds. To describe the discrete bed-load dynamics, we propose a discrete spatiotemporal fractional advection-dispersion equation (D-FADE) without relying on the debatable assumption of a continuous sediment distribution. The new model is then applied to explore nonlinear dynamics of bed-load transport in flumes. Results show that, first, the D-FADE model can capture the temporal memory and spatial dependency characteristics of bed-load transport for sediment with different sizes. Second, fine sediment particles exhibit stronger super-diffusive features, while coarse particles exhibit significant subdiffusive properties, likely due to the size-selective memory impact. Third, sediment transport with an instantaneous source exhibits stronger history memory and weaker spatial nonlocality, compared to that with a continuous source (since a smaller number of particles might be blocked or buried relatively easier). Hence, the D-FADE provides a strict computational model to quantify discrete bed-load transport, whose nonlinear dynamics can be sensitive to particle sizes and source injection modes, both common in applications.

References

References
1.
Rosgen
,
D. L.
,
1994
, “
A Classification of Natural Rivers
,”
Catena
,
22
(
3
), pp.
169
199
.
2.
Sear
,
D.
,
1994
, “
River Restoration and Geomorphology
,”
Aquat. Conserv.
,
4
(
2
), pp.
169
177
.
3.
Bravard
,
J.
,
Goichot
,
M.
, and
Tronchère
,
H.
,
2014
, “
An Assessment of Sediment-Transport Processes in the Lower Mekong River Based on Deposit Grain Sizes, the Cm Technique and Flow-Energy Data
,”
Geomorphology
,
207
, pp.
174
189
.
4.
Einstein
,
H.
,
1937
, “Bedload Transport as a Probability Problem,” Water Resource Publication, Littleton, CO, pp.
105
108
.
5.
Meyer-Peter
,
E.
, and
Müller
,
R.
,
1948
, “
Formulas for Bed-Load Transport
,” IAHSR 2nd meeting, Stockholm, Sweden, June 7–9.
6.
Valyrakis
,
M.
,
Diplas
,
P.
, and
Dancey
,
C. L.
,
2011
, “
Prediction of Coarse Particle Movement With Adaptive Neuro-Fuzzy Inference Systems
,”
Hydrol. Process.
,
25
(
22
), pp.
3513
3524
.
7.
Barry
,
J. J.
,
Buffington
,
J. M.
, and
King
,
J. G.
,
2004
, “
A General Power Equation for Predicting Bed Load Transport Rates in Gravel Bed Rivers
,”
Water. Resour. Res.
,
43
(
10
), pp.
2709
2710
.
8.
Bathurst
,
J. C.
,
2007
, “
Effect of Coarse Surface Layer on Bed-Load Transport
,”
J. Hydraul. Eng.
,
133
(
11
), pp.
1192
1205
.
9.
Chien
,
N.
, and
Wan
,
Z. H.
,
1999
, “
The Mechanics of Sediment Transport
,”
Am. Soc. Civ. Eng.
,
105
(
2
), pp.
268
268
.
10.
Gorenflo
,
R.
,
Mainardi
,
F.
,
Moretti
,
D.
,
Pagnini
,
G.
, and
Paradisi
,
P.
,
2002
, “
Discrete Random Walk Models for Space–Time Fractional Diffusion
,”
Chem. Phys.
,
284
(
1–2
), pp.
521
541
.
11.
Wilcock
,
P. R.
, and
Crowe
,
J. C.
,
2003
, “
Surface-Based Transport Model for Mixed-Size Sediment
,”
J. Hydraul. Eng.
,
129
(
2
), pp.
120
128
.
12.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev
.,
50
(1), pp. 15–67.
13.
Cushman
,
J. H.
,
1991
, “
On Diffusion in Fractal Porous Media
,”
Water. Resour. Res.
,
27
(
4
), pp.
643
644
.
14.
Cushman
,
J. H.
,
Hu
,
X. L.
, and
Ginn
,
T. R.
,
1994
, “
Nonequilibrium Statistical Mechanics of Preasymptotic Dispersion
,”
J. Stat. Phys.
,
75
(
5–6
), pp.
859
878
.
15.
Cushman
,
J. H.
, and
Ginn
,
T. R.
,
2000
, “
Fractional Advection-Dispersion Equation: A Classical Mass Balance With Convolution-Fickian Flux
,”
Water. Resour. Res.
,
36
(
12
), pp.
3763
3766
.
16.
Dentz
,
M.
, and
Berkowitz
,
B.
,
2003
, “
Transport Behavior of a Passive Solute in Continuous Time Random Walks and Multirate Mass Transfer
,”
Water. Resour. Res.
,
39
(
5
), pp.
285
285
.
17.
Haggerty
,
R.
,
McKenna
,
S. A.
, and
Meigs
,
L. C.
,
2000
, “
On the Late-Time Behavior of Tracer Test Breakthrough Curves
,”
Water. Resour. Res.
,
36
(
12
), pp.
3467
3479
.
18.
Grabasnjak
,
M.
,
2003
, “
Random Particle Motion and Fractional-Order Dispersion in Highly Heterogeneous Aquifers
,” Ph.D. thesis, University of Nevada, Reno, NV.
19.
Herrick
,
M. G.
,
Benson
,
D. A.
,
Meerschaert
,
M. M.
, and
McCall
,
K. R.
,
2002
, “
Hydraulic Conductivity, Velocity, and the Order of the Fractional Dispersion Derivative in a Highly Heterogeneous System
,”
Water. Resour. Res.
,
38
(
11
), pp.
1227
1239
.
20.
Singh
,
A. K.
,
Yadav
,
V. K.
, and
Das
,
S.
,
2017
, “
Dual Combination Synchronization of the Fractional Order Complex Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011017
.
21.
Sun
,
H. G.
,
Chen
,
D.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2015
, “
Understanding Partial Bed-Load Transport: Experiments and Stochastic Model Analysis
,”
J. Hydrol.
,
521
, pp.
196
204
.
22.
Zhang
,
Y.
,
Chen
,
D.
,
Garrard
,
R.
,
Sun
,
H. G.
, and
Lu
,
Y. H.
,
2016
, “
Influence of Bed Clusters and Size Gradation on Operational Time Distribution for Non-Uniform Bed-Load Transport
,”
Hydrol. Process.
,
30
(
17
), pp.
3030
3045
.
23.
Bradley
,
D. N.
,
Tucker
,
G. E.
, and
Benson
,
D. A.
,
2010
, “
Fractional Dispersion in a Sand Bed River
,”
J. Geophys. Res. Earth Surf.
,
115
(
F1
), p. F00A09.
24.
Zhang
,
Y.
,
Meerschaert
,
M. M.
, and
Packman
,
A. I.
,
2012
, “
Linking Fluvial Bed Sediment Transport Across Scales
,”
Geophys. Res. Lett.
,
39
(
20
), p.
20404
.
25.
Martin
,
R. L.
,
Jerolmack
,
D. J.
, and
Schumer
,
R.
,
2012
, “
The Physical Basis for Anomalous Diffusion in Bed Load Transport
,”
J. Geophys. Res. Earth
,
117
(
F1
), p. F01018.
26.
Tarasov
,
V.
,
2016
, “
Leibniz Rule and Fractional Derivatives of Power Functions
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031014
.
27.
Holm
,
M. T.
,
2011
, “
The Theory of Discrete Fractional Calculus: Development and Application
,”
Ph.D. dissertation
, University of Nebraska, Lincoln, NE, pp.
1120
1127
.
28.
Atici
,
F. M.
, and
Eloe
,
P. W.
,
2007
, “
A Transform Method in Discrete Fractional Calculus
,”
IJDE
,
2
(
2
), pp.
165
176
.
29.
Wu
,
G. C.
,
Baleanu
,
D.
, and
Xie
,
H. P.
,
2016
, “
Riesz Riemann-Liouville Difference on Discrete Domains
,”
Chaos
,
26
(
8
), p.
084308
.
30.
Wu
,
G. C.
,
Baleanu
,
D.
,
Deng
,
Z. G.
, and
Zeng
,
S. D.
,
2015
, “
Lattice Fractional Diffusion Equation in Terms of a Riesz-Caputo Difference
,”
Phys. A
,
438
, pp.
335
339
.
31.
Armanini, A.
, and
Di Silvio, G.
,
1988
, “
A One-Dimensional Model for the Transport of a Sediment Mixture in Non-Equilibrium Conditions
,”
J. Hydraul. Res.
,
26
(
3
), pp.
275
292
.
32.
Nikora
,
V.
,
Habersack
,
H.
,
Huber
,
T.
, and
McEwan
,
I.
,
2002
, “
On Bed Particle Diffusion in Gravel Bed Flows Under Weak Bed Load Transport
,”
Water. Resour. Res.
,
38
(
6
), pp.
11
17
.
33.
Agarwal
,
R.
,
Belmekki
,
M.
, and
Benchohra
,
M.
,
2009
, “
A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative
,”
Adv. Differ. Equ.
,
2009
(
1
), p.
981728
.
34.
Podlubny, I.
, 1998,
Fractional Differential Equations
, Academic Press, San Diego, CA, pp. 43–48.
35.
Abdeljawad
,
T.
,
2011
, “
On Riemann and Caputo Fractional Differences
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1602
1611
.
36.
Mozyrska
,
D.
, and
Girejko
,
E.
,
2013
, “
Overview of Fractional h-Difference Operators
,”
Advances in Harmonic Analysis and Operator Theory
,
Springer
, Cham, Switzerland, pp.
253
268
.
You do not currently have access to this content.