A computational methodology to model and analyze planar rigid mechanical system with stick–slip friction in revolute clearance joint is presented. In this work, the LuGre friction model, which captures the Stribeck effect and spring-like characteristics for stiction, is employed to estimate the stick–slip friction in revolute clearance joint. A hybrid contact force model, combining Lankarani–Nikravesh model, and improved elastic foundation model, is used to establish contact model. The generalized-α method, which can dissipate the spurious high-frequency responses caused by the strongly nonlinear contact force and friction in numerical simulation, is adopted to solve the equations of motion and make the result closer to the physics of the problem. A slider-crank mechanism with revolute clearance joint based on LuGre friction model and modified coulomb friction model are simulated, respectively, and utilized to discuss the influences of the Stribeck effect and stiction on dynamic behavior of the mechanism. Different test scenarios are considered to investigate the effects of the clearance size and friction coefficient on the dynamic response of the mechanism. The results show that the mechanism based on LuGre friction model has better energy dissipation characteristics, while there are stiction phenomena of the contacting surfaces in many cases. When the relative velocity is zero or close to zero, the contact force of mechanism based on the LuGre friction model is significantly lower than that based on the modified coulomb friction model. Clearance size and friction coefficient obviously affect dynamic behavior of the mechanism.

References

References
1.
Dubowsky
,
S.
, and
Freudenstein
,
F.
,
1971
, “
Dynamic Analysis of Mechanical Systems With Clearances—Part 1: Formation of Dynamic Model
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
305
309
.
2.
Dubowsky
,
S.
, and
Freudenstein
,
F.
,
1971
, “
Dynamic Analysis of Mechanical Systems With Clearances—Part 2: Dynamic Response
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
310
316
.
3.
Earles
,
S. W. E.
, and
Wu
,
C. L. S.
,
1973
, “
Motion Analysis of a Rigid Link Mechanism With Clearance at a Bearing Using Lagrangian Mechanics and Digital Computation
,”
J. Mech.
, pp.
83
89
.
4.
Farahanchi
,
F.
, and
Shaw
,
S. W.
,
1994
, “
Chaotic and Periodic Dynamics of a Slider-Crank Mechanism With Slider Clearance
,”
J. Sound Vib.
,
177
(
3
), pp.
307
324
.
5.
Ravn
,
P.
,
1998
, “
A Continuous Analysis Method for Planar Multibody Systems With Joint Clearance
,”
Multibody Syst. Dyn.
,
2
(
1
), pp.
1
24
.
6.
Ravn
,
P.
,
Shivaswamy
,
S.
, and
Alshaer
,
B. J.
,
2000
, “
Lankarani HM. Joint Clearances With Lubricated Long Bearings in Multibody Mechanical Systems
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
484
488
.
7.
Flores
,
P.
, and
Ambrósio
,
J.
,
2004
, “
Revolute Joints With Clearance in Multibody Systems
,”
Comput. Struct.
,
82
(
17–19
), pp.
1359
1369
.
8.
Flores
,
P.
,
Ambrósio
,
J.
, and
Claro
,
J. C. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.
9.
Flores
,
P.
,
Lankarani
,
H. M.
,
Ambrósio
,
J.
, and
Claro
,
J. C. P.
,
2004
, “
Modelling Lubricated Revolute Joints in Multibody Mechanical Systems
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
218
(
4
), pp.
183
190
.
10.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
,
Lankarani
,
H. M.
, and
Koshy
,
C. S.
,
2006
, “
A Study on Dynamics of Mechanical Systems Including Joints With Clearance and Lubrication
,”
Mech. Mach. Theory
,
41
(
3
), pp.
247
261
.
11.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2010
, “
Spatial Rigid-Multibody Systems With Lubricated Spherical Clearance Joints: Modeling and Simulation
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
99
114
.
12.
Tian
,
Q.
,
Zhang
,
Y. Q.
,
Chen
,
L. P.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.
13.
Tian
,
Q.
,
Zhang
,
Y. Q.
,
Chen
,
L. P.
, and
Yang
,
J.
,
2010
, “
Simulation of Planar Flexible Multibody Systems With Clearance and Lubricated Revolute Joints
,”
Nonlinear Dyn.
,
60
(
4
), pp.
489
511
.
14.
Tian
,
Q.
,
Liu
,
C.
,
Machado
,
M.
, and
Flores
,
P.
,
2011
, “
A New Model for Dry and Lubricated Cylindrical Joints With Clearance in Spatial Flexible Multibody Systems
,”
Nonlinear Dyn.
,
64
(
1–2
), pp.
25
47
.
15.
Tian
,
Q.
,
Luo
,
J.
, and
Mikkola
,
A.
,
2017
, “
A New Elastohydrodynamic Lubricated Spherical Joint Model for Rigid-Flexible Multibody Dynamics
,”
Mech. Mach. Theory
,
107
, pp.
210
228
.
16.
Erkaya
,
S.
, and
Uzmay
,
İ.
,
2009
, “
Determining Link Parameters Using Genetic Algorithm in Mechanisms With Joint Clearance
,”
Mech. Mach. Theory
,
44
(
1
), pp.
222
234
.
17.
Erkaya
,
S.
, and
Uzmay
,
İ.
,
2009
, “
Optimization of Transmission Angle for Slider-Crank Mechanism With Joint Clearances
,”
Struct. Multidiscip. Optim.
,
37
(
5
), pp.
493
508
.
18.
Erkaya
,
S.
, and
Uzmay
,
İ.
,
2014
, “
Modeling and Simulation of Joint Clearance Effects on Mechanisms Having Rigid and Flexible Links
,”
J. Mech. Sci. Technol.
,
28
(
8
), pp.
2979
2986
.
19.
Sun
,
D. Y.
,
Chen
,
G. P.
,
Wang
,
T. C.
, and
Sun
,
R. J.
,
2014
, “
Wear Prediction of a Mechanism With Joint Clearance Involving Aleatory and Epistemic Uncertainty
,”
ASME J. Tribol.
,
136
(
4
), p.
041101
.
20.
Li
,
Y. Y.
,
Chen
,
G. P.
,
Sun
,
D. Y.
,
Gao
,
Y.
, and
Wang
,
K.
,
2016
, “
Dynamic Analysis and Optimization Design of a Planar Slider–Crank Mechanism With Flexible Components and Two Clearance Joints
,”
Mech. Mach. Theory
,
99
, pp.
37
57
.
21.
Khemili
,
I.
, and
Romdhane
,
L.
,
2008
, “
Dynamic Analysis of a Flexible Slider–Crank Mechanism With Clearance
,”
Eur. J. Mech. A Solid
,
27
(
5
), pp.
882
898
.
22.
Dupac
,
M.
, and
Beale
,
D. G.
,
2010
, “
Dynamic Analysis of a Flexible Linkage Mechanism With Cracks and Clearance
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1909
1923
.
23.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
,
W.
Schiehlen
and
M.
Valásek
, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 57–81.
24.
Flores
,
P.
,
2010
, “
A Parametric Study on the Dynamic Response of Planar Multibody Systems With Multiple Clearance Joints
,”
Nonlinear Dyn.
,
61
(
4
), pp.
633
653
.
25.
Flores
,
P.
,
2004
, “
Dynamic Analysis of Mechanical Systems With Imperfect Kinematic Joints
,”
Ph.D. dissertation
, University of Minho, Guimarães, Portugal.
26.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.
27.
Pennestrì
,
E.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2007
, “
Multibody Dynamics Simulation of Planar Linkages With Dahl Friction
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
321
347
.
28.
Keller
,
J. B.
,
1986
, “
Impact With Friction
,”
ASME J. Appl. Mech.
,
53
(
1
), pp.
1
4
.
29.
Wang
,
Y.
, and
Mason
,
M. T.
,
1992
, “
Two-Dimensional Rigid-Body Collisions With Friction
,”
ASME J. Appl. Mech
,
59
(
3
), pp.
635
642
.
30.
Muvengei
,
O.
,
Kihiu
,
J.
, and
Ikua
,
B.
,
2012
, “
Computational Implementation of LuGre Friction Law in a Revolute Joint With Clearance
,”
Mechanical Engineering Conference on Sustainable Research and Innovation
, May 3–4, pp.
99
108
.
31.
Dahl
,
P. R.
,
1976
, “
Solid Friction Damping of Mechanical Vibrations
,”
AIAA J.
,
14
(
12
), pp.
1675
1682
.
32.
Haessig
,
D. A.
, and
Friedland
,
B.
,
1991
, “
On the Modelling and Simulation of Friction
,”
ASME J. Dyn. Sys., Meas., Control
,
113
(
3
), pp.
354
362
.
33.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
34.
Canudas de Wit
,
C.
, and
Tsiotras
,
P.
,
2002
, “
Dynamic Tire Friction Models for Vehicle Traction Control
,”
38th IEEE Conference on Decision and Control
(
CDC
), Phoenix, AZ, Dec. 7–10, pp.
3746
3751
.
35.
Bhushan
,
B.
,
2002
,
Introduction to Tribology
,
2nd ed.
,
Wiley
,
New York
.
36.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
37.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2012
, “
Dynamic Behaviour Analysis of Planar Mechanical Systems With Clearance in Revolute Joints Using a New Hybrid Contact Force Model
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
190
205
.
38.
Liu
,
C. S.
,
Zhang
,
K.
, and
Yang
,
R.
,
2007
, “
The FEM Analysis and Approximate Model for Cylindrical Joints With Clearances
,”
Mech. Mach. Theory
,
42
(
2
), pp.
183
197
.
39.
Flores
,
P.
,
2009
, “
Modeling and Simulation of Wear in Revolute Clearance Joints in Multibody Systems
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1211
1222
.
40.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
41.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
42.
Nakashima
,
A.
,
Ooka
,
Y.
, and
Hayakawa
,
Y.
,
2015
, “
Contact Transition Modelling on Planar Manipulation System With LuGre Friction Model
,”
Tenth International Workshop on Robot Motion and Control
(
RoMoCo
), Poznan, Poland, July 6–8, pp.
300
307
.
You do not currently have access to this content.