Vibrational resonance (VR) is a nonlinear phenomenon which occurs when a bistable system is subjected to a biharmonic excitation consisting of a small-amplitude resonant excitation and a large-amplitude high-frequency excitation. The result is that, under some conditions, the high-frequency excitation amplifies the resonant response associated with the slow dynamics. While VR was studied extensively in the open literature, most of the research studies used optical and electrical systems as platforms for experimental investigation. This paper provides experimental evidence that VR can also occur in a mechanical bistable twin-well oscillator and discusses the conditions under which VR is possible. The paper also demonstrates that the injection of the high frequency excitation can be used to change the effective stiffness of the slow response. This can be used for amplification/deamplification of the output signal which can be useful for sensitivity enhancement and/or vibration mitigation.

References

References
1.
Landa
,
P.
, and
McClintock
,
P. V.
,
2000
, “
Vibrational Resonance
,”
J. Phys. A: Math. Gen.
,
33
(
45
), p.
L433
.
2.
Chizhevsky
,
V.
,
Smeu
,
E.
, and
Giacomelli
,
G.
,
2003
, “
Experimental Evidence of Vibrational Resonance in an Optical System
,”
Phys. Rev. Lett.
,
91
(
22
), p.
220602
.
3.
Baltanás
,
J.
,
Lopez
,
L.
,
Blechman
,
I.
,
Landa
,
P.
,
Zaikin
,
A.
,
Kurths
,
J.
, and
Sanjuán
,
M.
,
2003
, “
Experimental Evidence, Numerics, and Theory of Vibrational Resonance in Bistable Systems
,”
Phys. Rev. E
,
67
(
6
), p.
066119
.
4.
Ullner
,
E.
,
Zaikin
,
A.
,
Garcia-Ojalvo
,
J.
,
Bascones
,
R.
, and
Kurths
,
J.
,
2003
, “
Vibrational Resonance and Vibrational Propagation in Excitable Systems
,”
Phys. Lett. A
,
312
(
5–6
), pp.
348
354
.
5.
Daza
,
A.
,
Wagemakers
,
A.
,
Rajasekar
,
S.
, and
Sanjuán
,
M. A.
,
2013
, “
Vibrational Resonance in a Time-Delayed Genetic Toggle Switch
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
2
), pp.
411
416
.
6.
Sun
,
J.
,
Deng
,
B.
,
Liu
,
C.
,
Yu
,
H.
,
Wang
,
J.
,
Wei
,
X.
, and
Zhao
,
J.
,
2013
, “
Vibrational Resonance in Neuron Populations With Hybrid Synapses
,”
Appl. Math. Modell.
,
37
(
9
), pp.
6311
6324
.
7.
Abirami
,
K.
,
Rajasekar
,
S.
, and
Sanjuan
,
M.
,
2013
, “
Vibrational Resonance in the Morse Oscillator
,”
Pramana
,
81
(
1
), pp.
127
141
.
8.
Jeevarathinam
,
C.
,
Rajasekar
,
S.
, and
Sanjuan
,
M. A.
,
2013
, “
Vibrational Resonance in Groundwater-Dependent Plant Ecosystems
,”
Ecol. Complexity
,
15
, pp.
33
42
.
9.
Jeyakumari
,
S.
,
Chinnathambi
,
V.
,
Rajasekar
,
S.
, and
Sanjuan
,
M.
,
2009
, “
Analysis of Vibrational Resonance in a Quintic Oscillator
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
19
(
4
), p.
043128
.
10.
Rajasekar
,
S.
,
Abirami
,
K.
, and
Sanjuán
,
M.
,
2011
, “
Novel Vibrational Resonance in Multistable Systems
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
21
(
3
), p.
033106
.
11.
Gandhimathi
,
V.
,
Rajasekar
,
S.
, and
Kurths
,
J.
,
2006
, “
Vibrational and Stochastic Resonances in Two Coupled Overdamped Anharmonic Oscillators
,”
Phys. Lett. A
,
360
(
2
), pp.
279
286
.
12.
Rajasekar
,
S.
,
Used
,
J.
,
Wagemakers
,
A.
, and
Sanjuan
,
M.
,
2012
, “
Vibrational Resonance in Biological Nonlinear Maps
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
8
), pp.
3435
3445
.
13.
Fidlin
,
A.
,
2000
, “
On Asymptotic Properties of Systems With Strong and Very Strong High-Frequency Excitation
,”
J. Sound Vib.
,
235
(
2
), pp.
219
233
.
14.
Tcherniak
,
D.
,
1999
, “
The Influence of Fast Excitation on a Continuous System
,”
J. Sound Vib.
,
227
(
2
), pp.
343
360
.
15.
Thomsen
,
J. J.
,
2000
, “
Stiffening Effects of High-Frequency Excitation: Experiments for an Axially Loaded Beam
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
397
402
.
16.
Thomsen
,
J. J.
,
2002
, “
Some General Effects of Strong High-Frequency Excitation: Stiffening, Biasing and Smoothening
,”
J. Sound Vib.
,
253
(
4
), pp.
807
831
.
17.
Blekhman
,
I.
, and
Landa
,
P.
,
2004
, “
Conjugate Resonances and Bifurcations in Nonlinear Systems Under Biharmonical Excitation
,”
Int. J. Non-Linear Mech.
,
39
(
3
), pp.
421
426
.
18.
Chizhevsky
,
V.
, and
Giacomelli
,
G.
,
2005
, “
Improvement of Signal-to-Noise Ratio in a Bistable Optical System: Comparison Between Vibrational and Stochastic Resonance
,”
Phys. Rev. A
,
71
(
1
), p.
011801
.
19.
Ichiki
,
A.
,
Tadokoro
,
Y.
, and
Takanashi
,
M.
,
2012
, “
Linear Response Analysis of Vibrational Resonance in Over-Damped Systems
,”
J. Phys. A: Math. Theor.
,
45
(
38
), p.
385101
.
20.
Stan
,
C.
,
Cristescu
,
C.
,
Alexandroaei
,
D.
, and
Agop
,
M.
,
2009
, “
Stochastic Resonance and Vibrational Resonance in an Excitable System: The Golden Mean Barrier
,”
Chaos, Solitons Fractals
,
41
(
2
), pp.
727
734
.
You do not currently have access to this content.