In this effort, we utilize a decentralized neuro-adaptive scheme in extinguishing both the chaotic and hyperchaotic dynamics of the so-called “Smart Valves” network. In particular, a network of two dynamically interconnected bidirectional solenoid actuated butterfly valves undergoes the harmful chaotic/hyperchaotic dynamics subject to some initial conditions and critical parameters. Crucial trade-offs, including robustness, computational burden, and practical feasibility of the control scheme, are thoroughly investigated. The advantages and shortcomings of the decentralized neuro-adaptive method are compared with those of the direct decentralized adaptive one to yield a computationally efficient, practically feasible, and robust scheme in the presence of the coupled harmful responses.

References

References
1.
Naseradinmousavi
,
P.
,
Ashrafiuon
,
H.
, and
Ayoubi
,
M. A.
,
2018
, “
An Adaptive Centralized Approach to Control Chaotic and Hyperchaotic Dynamics of Smart Valves Network
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011002
.
2.
Naseradinmousavi
,
P.
,
Segala
,
D. B.
, and
Nataraj
,
C.
,
2016
, “
Chaotic and Hyperchaotic Dynamics of Smart Valves System Subject to a Sudden Contraction
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051025
.
3.
Naseradinmousavi
,
P.
,
Krstic
,
M.
, and
Nataraj
,
C.
,
2016
, “
Design Optimization of Dynamically Coupled Actuated Butterfly Valves Subject to a Sudden Contraction
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041402
.
4.
Naseradinmousavi
,
P.
,
Machiani
,
S. G.
,
Ayoubi
,
M. A.
, and
Nataraj
,
C.
,
2017
, “
Coupled Operational Optimization of Smart Valve System Subject to Different Approach Angles of a Pipe Contraction
,”
J. Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1001
1015
.
5.
Naseradinmousavi
,
P.
,
2014
, “
A Novel Nonlinear Modeling and Dynamic Analysis of Solenoid Actuated Butterfly Valves Coupled in Series
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
1
), p.
014505
.
6.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2013
, “
Optimal Design of Solenoid Actuators Driving Butterfly Valves
,”
ASME J. Mech. Des.
,
135
(
9
), p.
094501
.
7.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2012
, “
Transient Chaos and Crisis Phenomena in Butterfly Valves Driven by Solenoid Actuators
,”
J. Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4336
4345
.
8.
Lee
,
D.
,
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2012
, “
Nonlinear Model-Based Adaptive Control of a Solenoid-Valve System
,”
J. Control Sci. Eng.
,
2012
, p. 846458.
9.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
Nonlinear Mathematical Modeling of Butterfly Valves Driven by Solenoid Actuators
,”
J. Appl. Math. Model.
,
35
(
5
), pp.
2324
2335
.
10.
Naseradinmousavi
,
P.
,
Ashrafiuon
,
H.
, and
Bagheri
,
M.
,
2018
, “
Suppressing Chaotic and Hyperchaotic Dynamics of Smart Valves Network Using a Centralized Adaptive Approach
,”
American Control Conference
(ACC), Milwaukee, WI, June 27–29, Paper No. 1056.
11.
Naseradinmousavi
,
P.
,
Bagheri
,
M.
,
Ashrafiuon
,
H.
,
Canova
,
M.
, and
Segala
,
D. B.
,
2017
, “
Suppressing Chaotic/Hyperchaotic Dynamics of Smart Valves Network Using Decentralized and Centralized Schemes
,”
ASME
Paper No. DSCC2017-5006.
12.
Naseradinmousavi
,
P.
,
Krstic
,
M.
,
Bagheri
,
M.
, and
Nataraj
,
C.
,
2016
, “
Coupled Chaotic and Hyperchaotic Dynamics of Actuated Butterfly Valves Operating in Series
,”
ASME
Paper No. DSCC2016-9601.
13.
Naseradinmousavi
,
P.
,
Bagheri
,
M.
, and
Nataraj
,
C.
,
2016
, “
Coupled Operational Optimization of Smart Valve System Subject to Different Approach Angles of a Pipe Contraction
,”
ASME
Paper No. DSCC2016-9627.
14.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2015
, “
Design Optimization of Solenoid Actuated Butterfly Valves Dynamically Coupled in Series
,”
ASME
Paper No. DSCC2015-9605.
15.
Naseradinmousavi
,
P.
,
2015
, “
Optimal Design of Solenoid Actuated Butterfly Valves Dynamically Coupled in Series
,”
ASME
Paper No. IMECE2015-50094.
16.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
A Chaotic Blue Sky Catastrophe of Butterfly Valves Driven by Solenoid Actuators
,”
ASME
Paper No. IMECE2011-62608.
17.
Zhang
,
X.
, and
Liao
,
L.
,
2016
, “
Compound Synchronization Based on Memristive Cellular Neural Network of Chaos System
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031002
.
18.
Chang-Jian
,
C.-W.
,
2014
, “
Gear Dynamics Analysis With Turbulent Journal Bearings Mounted Hybrid Squeeze Film Damper-Chaos and Active Control Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011011
.
19.
Morel
,
C.
,
Vlad
,
R.
, and
Morel
,
J.-Y.
,
2008
, “
Anticontrol of Chaos Reduces Spectral Emissions
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041009
.
20.
Luo
,
R.
, and
Zeng
,
Y.
,
2016
, “
The Control and Synchronization of a Class of Chaotic Systems With Output Variable and External Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051011
.
21.
Lin
,
C.-H.
,
2015
, “
Application of v-Belt Continuously Variable Transmission System Using Hybrid Recurrent Laguerre Orthogonal Polynomials Neural Network Control System and Modified Particle Swarm Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051019
.
22.
Reddy
,
B. S.
, and
Ghosal
,
A.
,
2016
, “
Asymptotic Stability and Chaotic Motions in Trajectory Following Feedback Controlled Robots
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051012
.
23.
Khamsuwan
,
P.
, and
Kuntanapreeda
,
S.
,
2016
, “
A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051021
.
24.
Merat
,
K.
,
Chekan
,
J. A.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2014
, “
Control of Discrete Time Chaotic Systems Via Combination of Linear and Nonlinear Dynamic Programming
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011008
.
25.
Tian
,
X.
, and
Fei
,
S.
,
2015
, “
Adaptive Control for Fractional-Order Micro-Electro-Mechanical Resonator With Nonsymmetric Dead-Zone Input
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061022
.
26.
Arefi
,
M. M.
,
2016
, “
Adaptive Robust Stabilization of Rossler System With Time-Varying Mismatched Parameters Via Scalar Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041024
.
27.
Chen
,
D.
, and
Liu
,
W.
,
2016
, “
Chaotic Behavior and Its Control in a Fractional-Order Energy Demand-Supply System
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061010
.
28.
Chen
,
X.
,
Cao
,
J.
,
Qiu
,
J.
,
Alsaedi
,
A.
, and
Alsaadi
,
F. E.
,
2016
, “
Adaptive Control of Multiple Chaotic Systems With Unknown Parameters in Two Different Synchronization Modes
,”
Advances in Difference Equations
, Springer, New York, p.
231
.
29.
Zomaya
,
A. Y.
, and
Nabhan
,
T. M.
,
1993
, “
Centralized and Decentralized Neuro-Adaptive Robot Controllers
,”
Neural Networks
,
6
(
2
), pp.
223
244
.
30.
Chen
,
Y. H.
,
1991
, “
Decentralized Adaptive Robust Control Design: The Uncertainty is Time Varying
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
3
), pp.
515
518
.
31.
Hsiao
,
F.-H.
,
Liang
,
Y.-W.
,
Xu
,
S.-D.
, and
Lee
,
G.-C.
,
2005
, “
Decentralized Stabilization of Neural Network Linearly Interconnected Systems Via t-s Fuzzy Control
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
3
), pp.
343
351
.
32.
Karpenko
,
M.
,
Sepehri
,
N.
, and
Anderson
,
J.
,
2007
, “
Decentralized Coordinated Motion Control of Two Hydraulic Actuators Handling a Common Object
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
5
), pp.
729
741
.
33.
Yang
,
Y.
, and
Yue
,
D.
,
2017
, “
Observer-Based Decentralized Adaptive NNs Fault-Tolerant Control of a Class of Large-Scale Uncertain Nonlinear Systems With Actuator Failures
,”
IEEE Trans. Syst., Man, Cybern. Syst.
,
PP
(
99
), pp.
1
15
.
34.
Eltantawie
,
M. A.
,
2012
, “
Decentralized Neuro-Fuzzy Control for Half Car With Semi-Active Suspension System
,”
Int. J. Automot. Technol.
,
13
(
3
), pp.
423
431
.
35.
Shi
,
L.
, and
Singh
,
S. K.
,
1992
, “
Decentralized Adaptive Controller Design for Large-Scale Systems With Higher-Order Interconnections
,”
American Control Conference
(
ACC
), Chicago, IL, June 24–26, pp.
3146
3150
.
36.
Duan
,
N.
, and
Min
,
H.-F.
,
2016
, “
Decentralized Adaptive NN State-Feedback Control for Large-Scale Stochastic High-Order Nonlinear Systems
,”
J. Neurocomput.
,
173
, pp.
1412
1421
.
37.
Tong
,
S.
,
Li
,
Y.
, and
Wang
,
T.
,
2013
, “
Adaptive Fuzzy Decentralized Output Feedback Control for Stochastic Nonlinear Large-Scale Systems Using DSC Technique
,”
Int. J. Robust Nonlinear Control
,
23
(
4
), pp.
381
399
.
38.
Zhang
,
X.
,
Ma
,
H.
, and
Yang
,
C.
,
2017
, “
Decentralized Adaptive Control of a Class of Hidden Leader-Follower Nonlinearly Parameterized Coupled Multi-Agent Systems
,”
IET Control Theory Appl.
,
11
(
17
), pp.
3016
3025
.
39.
Skworcow
,
P.
,
Ulanicki
,
B.
,
AbdelMeguid
,
H.
, and
Paluszczyszyn
,
D.
,
2010
, “
Model Predictive Control for Energy and Leakage Management in Water Distribution Systems
,”
UKACC Eighth International Conference on Control
, Coventry, UK, Sept. 7–10, pp.
990
995
.
40.
Negenborn
,
R.
,
Schutter
,
B. D.
, and
Hellendoorn
,
J.
,
2008
, “
Multi-Agent Model Predictive Control for Transportation Networks: Serial Vs. parallel Schemes
,”
Eng. Appl. Artif. Intell.
,
21
(
3
), pp.
353
366
.
41.
Bottura
,
C. P.
, and
Caceres
,
A. F. T.
,
2002
, “
Decentralized Control of Serial Interconnected Systems for River Water Quality Via Subspace Identification
,”
American Control Conference
(
ACC
), Anchorage, AK, May 8–10, pp.
3338
3342
.
42.
Joseph-Duran
,
B.
,
Ocampo-Martinez
,
C.
, and
Cembrano
,
G.
,
2015
, “
Output-Feedback Control of Combined Sewer Networks Through Receding Horizon Control With Moving Horizon Estimation
,”
Water Resour. Res.
,
51
(
10
), pp.
8129
8145
.
43.
Grosso
,
J. M.
,
Velarde
,
P.
,
Ocampo-Martinez
,
C.
,
Maestre
,
J. M.
, and
Puig
,
V.
,
2016
, “
Stochastic Model Predictive Control Approaches Applied to Drinking Water Networks
,”
Optim. Control Appl. Methods
,
38
(
4
), pp.
541
588
.
44.
Fambrini
,
V.
, and
Ocampo-Martinez
,
C.
,
2009
, “Modelling and Decentralized Model Predictive Control of Drinking Water Networks,” Institut de Robotica i Informatica Industrial (CSIC-UPC), Barcelona, Spain, Technical Report No.
IRI-TR-04-09
.
45.
Barcelli
,
D.
,
Ocampo-Martinez
,
C.
,
Puig
,
V.
, and
Bemporad
,
A.
,
2010
, “
Decentralized Model Predictive Control of Drinking Water Networks Using an Automatic Subsystem Decomposition Approach
,”
IFAC Proc. Vol.
,
43
(8), pp. 572–577.
46.
Park
,
J. Y.
, and
Chung
,
M. K.
,
2006
, “
Study on Hydrodynamic Torque of a Butterfly Valve
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
190
195
.
47.
Naseradinmousavi
,
P.
,
2012
, “Nonlinear Modeling, Dynamic Analysis, and Optimal Design and Operation of Electromechanical Valve Systems,”
Ph.D. thesis
, Villanova University, Villanova, PA.
48.
Bennett
,
C. O.
, and
Myers
,
J. E.
,
1962
,
Momentum, Heat, and Mass Transfer
,
McGraw-Hill
, New York.
49.
Massey
,
B. S.
, and
Ward-Smith
,
J.
,
1998
,
Mechanics of Fluids
,
7th ed.
,
Taylor & Francis
, Boca Raton, FL.
50.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice Hall
, Upper Saddle River, NJ.
51.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D
,
16
(
3
), pp.
285
317
.
52.
Karimi
,
B.
,
Menhaj
,
M. B.
,
Karmi-Ghartemani
,
M.
, and
Saboori
,
I.
,
2009
, “
Decentralized Adaptie Control of Large-Scale Affine and Nonaffine Nonlinear Systems
,”
IEEE Trans. Instrum. Meas.
,
58
(
8
), pp.
2459
2467
.
53.
Spooner
,
J. T.
, and
Passino
,
K. M.
,
1996
, “
Adaptive Control of a Class of Decentralized Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
41
(
2
), pp.
280
284
.
54.
Wen
,
C.
,
1995
, “
Indirect Robust Totally Decentralized Adaptive Control of Continuous-Time Interconnected Systems
,”
IEEE Trans. Autom. Control
,
40
(
6
), pp.
1122
1126
.
55.
Wen
,
C.
,
1994
, “
Direct Decentralized Adaptive Control of Interconnected Systems Having Arbitrary Subsystem Relative Degrees
,”
33rd IEEE Conference on Decision and Control
(
CDC
), Lake Buena Vista, FL, Dec. 14–16, pp. 1187–1192.
56.
Lang
,
S.
,
1983
,
Real Analysis
,
Addison-Wesley
, Boston, MA.
57.
Karimi
,
B.
,
Menhaj
,
M. B.
,
Karmi-Ghartemani
,
M.
, and
Saboori
,
I.
,
2007
, “
A Decentralized Direct Adaptive Controller for a Class of Large-Scale Interconnected Nonlinear Systems
,”
IEEE International Symposium on Intelligent Signal Processing
(
WISP
), Alcala de Henares, Spain, Oct. 3–5, pp.
265
270
.
58.
Karimi
,
B.
,
Menhaj
,
M. B.
, and
Saboori
,
I.
,
2007
, “
Decentralized Adaptive Control of Large-Scale Nonaffine Nonlinear Systems Using Radial Basis Function Neural Networks
,”
IEICE Trans. Fundam.
,
E90-A
(
10
), pp.
2239
2247
.
59.
Krstić
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotović
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley-Interscience
, New York.
60.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.