This paper is devoted to present a theorem on a new property of noninvasive control methods applied to stabilize unstable periodic orbits (UPOs). This property is related to the optimal energy consumption of the controller in the presence of noise. The approach of parameter optimization is applied to study optimal energy consumption of the controller. Throughout this paper, the problem of energy consumption of the controller is studied when the system state is close to the UPO, and fluctuates around it because of the presence of noise.

References

References
1.
Wei‐Guo
,
L.
,
Luo‐Wei
,
Z.
,
Quan‐Ming
,
L.
, and
Jun‐Ke
,
W.
,
2011
, “
Non‐Invasive Chaos Control of DC–DC Converter and Its Optimization
,”
Int. J. Circuit Theory Appl.
,
39
(
2
), pp.
159
174
.
2.
Lu
,
W.-G.
,
Zhou
,
L.-W.
,
Luo
,
Q.-M.
, and
Zhang
,
X.-F.
,
2008
, “
Filter Based Non-Invasive Control of Chaos in Buck Converter
,”
Phys. Lett. A
,
372
(
18
), pp.
3217
3222
.
3.
Macau
,
E. E. N.
,
2003
, “
Exploiting Unstable Periodic Orbits of a Chaotic Invariant Set for Spacecraft Control
,”
Celestial Mech. Dyn. Astron.
,
87
(
3
), pp.
291
305
.
4.
Kulkarni
,
J. E.
,
Campbell
,
M. E.
, and
Dullerud
,
G. E.
,
2006
, “
Stabilization of Spacecraft Flight in Halo Orbits: An H∞ Approach
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
572
578
.
5.
Biggs
,
J. D.
, and
McInnes
,
C. R.
,
2009
, “
Time-Delayed Feedback Control in Astrodynamics
,”
J. Guid. Control Dyn.
,
32
(
6
), pp.
1804
1811
.
6.
Fradkov
,
A. L.
,
Evans
,
R. J.
, and
Andrievsky
,
B. R.
,
2006
, “
Control of Chaos: Methods and Applications in Mechanics
,”
Philos. Trans. R. Soc. London A
,
364
(
1846
), pp.
2279
2307
.
7.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
8.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.
9.
Schikora
,
S.
,
Hövel
,
P.
,
Wünsche
,
H.-J.
,
Schöll
,
E.
, and
Henneberger
,
F.
,
2006
, “
All-Optical Noninvasive Control of Unstable Steady States in a Semiconductor Laser
,”
Phys. Rev. Lett.
,
97
(
21
), p.
213902
.
10.
Yamasue
,
K.
,
Kobayashi
,
K.
,
Yamada
,
H.
,
Matsushige
,
K.
, and
Hikihara
,
T.
,
2009
, “
Controlling Chaos in Dynamic-Mode Atomic Force Microscope
,”
Phys. Lett. A
,
373
(
35
), pp.
3140
3144
.
11.
Pyragas
,
K.
, and
Tamaševičius
,
A.
,
1993
, “
Experimental Control of Chaos by Delayed Self-Controlling Feedback
,”
Phys. Lett. A
,
180
(
1–2
), pp.
99
102
.
12.
Sukow
,
D. W.
,
Bleich
,
M. E.
,
Gauthier
,
D. J.
, and
Socolar
,
J. E. S.
,
1997
, “
Controlling Chaos in a Fast Diode Resonator Using Extended Time-Delay Autosynchronization: Experimental Observations and Theoretical Analysis
,”
Chaos
,
7
(
4
), pp.
560
576
.
13.
Kojima
,
H.
,
Furukawa
,
Y.
, and
Trivailo
,
P. M.
,
2012
, “
Experimental Study on Delayed Feedback Control for Liberation of Tethered Satellite System
,”
J. Guid. Control Dyn.
,
35
(
3
), pp.
998
1002
.
14.
Krodkiewski
,
J. M.
, and
Faragher
,
J. S.
,
2000
, “
Stabilization of Motion of Helicopter Rotor Blades Using Delayed Feedback—Modelling, Computer Simulation and Experimental Verification
,”
J. Sound Vib.
,
234
(
4
), pp.
591
610
.
15.
Gravier
,
E.
,
Caron
,
X.
,
Bonhomme
,
G.
,
Pierre
,
T.
, and
Briancon
,
J. L.
,
2000
, “
Dynamical Study and Control of Drift Waves in a Magnetized Laboratory Plasma
,”
Eur. Phys. J. D
,
8
(
3
), p.
451
.
16.
Feki
,
M.
,
2003
, “
An Adaptive Feedback Control of Linearizable Chaotic Systems
,”
Chaos, Solitons Fractals
,
15
(
5
), pp.
883
890
.
17.
Pyragas
,
K.
,
1995
, “
Control of Chaos Via Extended Delay Feedback
,”
Phys. Lett. A
,
206
(
5–6
), pp.
323
330
.
18.
Fourati
,
A.
,
Feki
,
M.
, and
Derbel
,
N.
,
2010
, “
Stabilizing the Unstable Periodic Orbits of a Chaotic System Using Model Independent Adaptive Time-Delayed Controller
,”
Nonlinear Dyn.
,
62
(
3
), pp.
687
704
.
19.
Tian
,
Y. P.
, and
Yu
,
X.
,
2000
, “
Stabilizing Unstable Periodic Orbits of Chaotic Systems Via an Optimal Principle
,”
J. Franklin Inst.
,
337
(
6
), pp.
771
779
.
20.
Srivastava
,
M.
,
2009
, “
Optimal and Adaptive Control Systems
,”
Control Systems
,
Tata McGraw-Hill
,
New Delhi, India
, pp.
290
294
.
21.
Kim
,
J. H.
,
2006
, “
Dynamics and Motion Planning of Redundant Manipulators Using Optimization, With Applications to Human Motion
,”
Ph.D. thesis
, The University of Iowa, Iowa City, Iowa.
22.
MathWorks, 2018, “Evaluating Goodness of Fit,” The MathWorks Inc., Natick, MA, accessed Mar. 2, 2018, https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html?requested Domain=true
You do not currently have access to this content.