This paper formulates a fractional-order finite time tracking scheme for a perturbed n-dimensional fractional-order extended chained form of nonholonomic system. First, the hierarchical sliding surfaces are properly selected, and then, a novel fractional-order sliding mode methodology is derived mathematically to accomplish the prescribed goal. With the introduction of new virtual controls, the proposed strategy renders finite time tracking of a fractional-order reference model in-spite of various system uncertainties. Further, the closed loop system stability is procured with the proposed method through fractional-Lyapunov and Mittag–Leffler-based stability theorems. It has also been verified analytically that the error dynamics converge to the chosen sliding surfaces in finite time. Finally, two examples including an engineering application of mobile robot are illustrated through matlab simulations to demonstrate the usefulness of the introduced control technique.

References

References
1.
Chen
,
H.
,
Wang
,
C.
,
Zhang
,
B.
, and
Zhang
,
D.
,
2013
, “
Saturated Tracking Control for Nonholonomic Mobile Robots With Dynamic Feedback
,”
Trans. Inst. Meas. Control
,
35
(
2
), pp.
105
116
.
2.
Chen
,
H.
,
2014
, “
Robust Stabilization for a Class of Dynamic Feedback Uncertain Nonholonomic Mobile Robots With Input Saturation
,”
Int. J. Control, Autom. Syst.
,
12
(
6
), pp.
1216
1224
.
3.
Murray
,
R. M.
, and
Sastry
,
S. S.
,
1993
, “
Nonholonomic Motion Planning: Steering Using Sinusoids
,”
IEEE Trans. Autom. Control
,
38
(
5
), pp.
700
716
.
4.
Brockett
,
R. W.
,
1983
, “
Asymptotic Stability and Feedback Stabilization
,”
Differential Geometric Control Theory
,
R. W.
Brockett
,
R. S.
Millman
,
and
H. J.
Sussmann
, eds.,
Birkhauser
,
Boston, MA
, pp.
181
208
.
5.
Ryan
,
E.
,
1994
, “
On Brockett's Condition for Smooth Stabilizability and Its Necessity in a Context of Non-Smooth Feedback
,”
SIAM J. Control Optim.
,
32
(
6
), pp.
1597
1604
.
6.
Lefeber
,
E.
,
Robertsson
,
A.
, and
Nijmeijer
,
H.
,
2000
, “
Linear Controllers for Exponential Tracking of Systems in Chained-Form
,”
Int. J. Robust Nonlinear Control
,
10
(
4
), pp.
243
263
.
7.
Lefeber
,
E.
,
2000
,
Tracking Control of Nonlinear Mechanical Systems
,
University of Twente
,
Enschede, The Netherlands
.
8.
Sordalen
,
O. J.
, and
Egeland
,
O.
,
1995
, “
Exponential Stabilization of Nonholonomic Chained Systems
,”
IEEE Trans. Autom. Control
,
40
(
1
), pp.
35
49
.
9.
Ge
,
S. S.
,
Wang
,
Z.
, and
Lee
,
T. H.
,
2003
, “
Adaptive Stabilization of Uncertain Non-Holonomic Systems by State and Output Feedback
,”
Automatica
,
39
(
8
), pp.
1451
1460
.
10.
Huang
,
J.
,
Wen
,
C.
,
Wang
,
W.
, and
Jiang
,
Z. P.
,
2013
, “
Adaptive Stabilization and Tracking Control of a Nonholonomic Mobile Robot With Input Saturation and Disturbance
,”
Syst. Control Lett.
,
62
(
3
), pp.
234
241
.
11.
Jiang
,
Z. P.
, and
Nijmeijer
,
H.
,
1999
, “
A Recursive Technique for Tracking Control of Nonholonomic Systems in the Chained Form
,”
IEEE Trans. Autom. Control
,
44
(
2
), pp.
265
279
.
12.
Tian
,
Y. P.
, and
Cao
,
K. C.
,
2007
, “
Time‐Varying Linear Controllers for Exponential Tracking of Non‐Holonomic Systems in Chained Form
,”
Int. J. Rob. Nonlinear Control
,
17
(
7
), pp.
631
647
.
13.
Oldham
,
K.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
,
Academic Press, New York
.
14.
Li
,
C.
, and
Deng
,
W.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math. Comput.
,
187
(
2
), pp.
777
784
.
15.
Hamamci
,
S. E.
,
2007
, “
An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers
,”
IEEE Trans. Autom. Control
,
52
(
10
), pp.
1964
1969
.
16.
Delavari
,
H.
,
Ghaderi
,
R.
,
Ranjbar
,
A.
, and
Momani
,
S.
,
2010
, “
Fuzzy Fractional Order Sliding Mode Controller for Nonlinear Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
963
978
.
17.
Aghababa
,
M. P.
,
2012
, “
Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems Based on Fractional Lyapunov Stability Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021010
.
18.
Young
,
K. D.
,
Utkin
,
V. I.
, and
Ozguner
,
U.
,
1996
, “
A Control Engineer's Guide to Sliding Mode Control
,”
IEEE International Workshop on Variable Structure Systems
(
VSS'96
), Tokyo, Japan, Dec. 5–6, pp.
1
14
.
19.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.
20.
Wu
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
,
1998
, “
Terminal Sliding Mode Control Design for Uncertain Dynamic Systems
,”
Syst. Control Lett.
,
34
(
5
), pp.
281
287
.
21.
Li
,
T. H. S.
, and
Huang
,
Y. C.
,
2010
, “
MIMO Adaptive Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulators
,”
Inf. Sci.
,
180
(
23
), pp.
4641
4660
.
22.
Aghababa
,
M. P.
,
2015
, “
Design of Hierarchical Terminal Sliding Mode Control Scheme for Fractional-Order Systems
,”
IET Sci., Meas. Technol.
,
9
(1), pp.
122
133
.
23.
Gao
,
F.
, and
Yuan
,
F.
,
2015
, “
Adaptive Finite-Time Stabilization for a Class of Uncertain High Order Nonholonomic Systems
,”
ISA Trans.
,
54
, pp.
75
82
.
24.
Mobayen
,
S.
,
2015
, “
Finite-Time Tracking Control of Chained-Form Nonholonomic Systems With External Disturbances Based on Recursive Terminal Sliding Mode Method
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
669
683
.
25.
Yuqiang
,
W.
,
Wang
,
B.
, and
Zong
,
G. D.
,
2005
, “
Finite-Time Tracking Controller Design for Nonholonomic Systems With Extended Chained Form
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
52
(
11
), pp.
798
802
.
26.
Bayat
,
F.
,
Mobayen
,
S.
, and
Javadi
,
S.
,
2016
, “
Finite-Time Tracking Control of Nth-Order Chained-Form Non-Holonomic Systems in the Presence of Disturbances
,”
ISA Trans.
,
63
, pp.
78
83
.
27.
Mobayen
,
S.
, and
Javadi
,
S.
,
2017
, “
Disturbance Observer and Finite-Time Tracker Design of Disturbed Third-Order Nonholonomic Systems Using Terminal Sliding Mode
,”
J. Vib. Control
,
23
(
2
), pp.
181
189
.
28.
Chen
,
M.
,
Wu
,
Q. X.
, and
Cui
,
R. X.
,
2013
, “
Terminal Sliding Mode Tracking Control for a Class of SISO Uncertain Nonlinear Systems
,”
ISA Trans.
,
52
(
2
), pp.
198
206
.
29.
Mobayen
,
S.
,
2015
, “
Fast Terminal Sliding Mode Tracking of Non-Holonomic Systems With Exponential Decay Rate
,”
IET Control Theory Appl.
,
9
(
8
), pp.
1294
1301
.
30.
Chen
,
H.
,
Yan
,
D.
,
Chen
,
X.
,
Lei
,
Y.
, and
Wang
,
Y.
,
2016
, “
Robust Finite-Time Stabilization of Fractional-Order Extended Nonholonomic Chained Form Systems
,”
Chinese Intelligent Systems Conference
(
CISC
), Yangzhou, China, pp.
1
15
.
31.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2009
, “
Mittag–Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
32.
Oustaloup
,
A.
,
Levron
,
F.
,
Mathieu
,
B.
, and
Nanot
,
F. M.
,
2000
, “
Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
47
(
1
), pp.
25
39
.
You do not currently have access to this content.