This paper introduces a new type of synchronization scheme, referred to as difference synchronization scheme, wherein the difference between the state variables of two master [slave] systems synchronizes with the state variable of a single slave [master] system. Using the Lyapunov stability theory and the active backstepping technique, controllers are derived to achieve the difference synchronization of three identical hyperchaotic Liu systems evolving from different initial conditions, as well as the difference synchronization of three nonidentical systems of different orders, comprising the 3D Lorenz chaotic system, 3D Chen chaotic system, and the 4D hyperchaotic Liu system. Numerical simulations are presented to demonstrate the validity and feasibility of the theoretical analysis. The development of difference synchronization scheme has increases the number of existing chaos synchronization scheme.

References

References
1.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
2.
Chakravorty
,
J.
,
Banerjee
,
T.
,
Ghatak
,
R.
,
Bose
,
A.
, and
Sarkar
,
B. C.
,
2009
, “
Generating Chaos in Injection-Synchronized Gunn Oscillator: An Experimental Approach
,”
IETE J. Res.
,
55
(
3
), pp.
106
111
.
3.
Eisencraft
,
M.
,
Fanganiello
,
R. D.
,
Grzybowski
,
J. M. V.
,
Soriano
,
D. C.
,
Attux
,
R.
,
Batista
,
A. M.
, and
Yoneyama
,
T.
,
2012
, “
Chaos-Based Communication Systems in Non-Ideal Channels
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
4707
4718
.
4.
Aguilar-López
,
R.
,
Martínez-Guerra
,
R.
, and
Perez-Pinacho
,
C. A.
,
2014
, “
Nonlinear Observer for Synchronization of Chaotic Systems With Application to Secure Data Transmission
,”
Eur. Phys. J. Spec. Top.
,
223
(
8
), pp.
1541
1548
.
5.
Nana
,
B.
,
Woafo
,
P.
, and
Domngang
,
S.
,
2009
, “
Chaotic Synchronization With Experimental Application to Secure Communications
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2266
2276
.
6.
Peng
,
C. C.
, and
Chen
,
C. L.
,
2008
, “
Robust Chaotic Control of Lorenz System by Backstepping Design
,”
Chaos Solitons Fractals
,
37
(
2
), pp.
598
608
.
7.
Njah
,
A. N.
,
2010
, “
Tracking Control and Synchronization of the New Hyperchaotic Liu System Via Backstepping Techniques
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
1
9
.
8.
Yassen
,
M. T.
,
2006
, “
Chaos Control of Chaotic Dynamical Systems Using Backstepping Design
,”
Chaos Solitons Fractals
,
27
(
2
), pp.
537
548
.
9.
Harb
,
A. M.
,
Zaher
,
A. A.
,
Al-Qaisia
,
A. A.
, and
Zohdy
,
M. A.
,
2007
, “
Recursive Backstepping Control of Chaotic Duffing Oscillators
,”
Chaos Solitons Fractals
,
34
(
2
), pp.
639
645
.
10.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp. 1196–1199.
11.
Njah
,
A. N.
, and
Sunday
,
O. D.
,
2009
, “
Generalization on the Chaos Control of 4-D Chaotic Systems Using Recursive Backstepping Nonlinear Controller
,”
Chaos Solitons Fractals
,
41
(
5
), pp.
2371
2376
.
12.
Njah
,
A. N.
,
Ojo
,
K. S.
,
Adebayo
,
G. A.
, and
Obawole
,
A. O.
,
2010
, “
Generalized Control and Synchronization of Chaos in RCL-Shunted Josephson Junction Using Backstepping Design
,”
Physica C
,
470
(
13–14
), pp.
558
564
.
13.
Vincent
,
U. E.
,
Njah
,
A. N.
, and
Laoye
,
J. A.
,
2007
, “
Controlling Chaos and Deterministic Directed Transport in Inertia Ratchets Using Backstepping Control
,”
Physica D
,
231
(
2
), pp.
130
136
.
14.
Zhang
,
H.
,
Ma
,
X. K.
,
Li
,
M.
, and
Zou
,
J. L.
,
2005
, “
Controlling and Tracking Hyperchaotic Rössler System Via Active Backstepping Design
,”
Chaos Solitons Fractals
,
26
(
2
), pp.
353
361
.
15.
Mascolo
,
S.
,
1997
, “
Backstepping Design for Controlling Lorenz Chaos
,”
36th IEEE Conference on Decision and Control,
Vol.
2
, pp.
1500
1501
.
16.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
, New York.
17.
Li
,
C.
,
Liao
,
X.
, and
Wong
,
K. W.
,
2004
, “
Chaotic Lag Synchronization of Coupled Time-Delayed Systems and Its Applications in Secure Communication
,”
Physica D
,
194
(
3–4
), pp.
187
202
.
18.
Salarieh
,
H.
, and
Alasty
,
A.
,
2009
, “
Adaptive Synchronization of Two Chaotic Systems With Stochastic Unknown Parameters
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
2
), pp.
508
519
.
19.
Cai
,
N.
,
Jing
,
Y.
, and
Zhang
,
S.
,
2010
, “
Modified Projective Synchronization of Chaotic Systems With Disturbances Via Active Sliding Mode Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
6
), pp.
1613
1620
.
20.
Tan
,
X.
,
Zhang
,
J.
, and
Yang
,
Y.
,
2010
, “
Synchronizing Chaotic Systems Using Backstepping Design
,”
Chaos Solitons Fractals
,
16
(
1
), pp.
37
45
.
21.
Ge
,
S. S.
,
Wang
,
C.
, and
Lee
,
T. H.
,
2003
, “
Adaptive Backstepping Control of a Class of Chaotic Systems
,”
Int. J. Bifurcation Chaos
,
10
(
5
), pp.
1149
1156
.
22.
Mohammadpour
,
S.
, and
Binazadeh
,
T.
,
2017
, “
Robust Adaptive Synchronization of Chaotic Systems With Nonsymmetric Input Saturation Constrains
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011005
.
23.
Liu
,
H.-J.
,
Yu
,
H.
, and
Zhu
,
Z.-L.
,
2017
, “
A Special Hybrid Projective Synchronization in Symmetric Chaotic System With Unknown Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051015
.
24.
Lu
,
R.
, and
Zeng
,
Y.
,
2016
, “
The Control and Synchronization of a Class Chaotic Systems With Output Variable and External Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051011
.
25.
Zhang
,
F. F.
, and
Liu
,
S.
,
2015
, “
Adaptive Complex Function Projective Synchronization of Uncertain Complex Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011013
.
26.
Chen
,
D.
,
Zha
,
W.
,
Liu
,
X.
, and
Ma
,
X.
,
2014
, “
Synchronization and Anti-Synchronization of a Class of Chaotic Systems With Nonidentical Order and Uncertain Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011003
.
27.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), p.
821
.
28.
Carroll
,
T. L.
, and
Pecora
,
L. M.
,
1991
, “
Synchronizing Chaotic Circuits
,”
IEEE Trans. Circuits Syst.
,
38
(
4
), pp.
453
456
.
29.
Wu
,
X.
,
Lai
,
D.
, and
Lu
,
H.
,
2012
, “
Generalized Synchronization of the Fractional-Order Chaos in Weighted Complex Dynamical Networks With Nonidentical Nodes
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
667
683
.
30.
Yang
,
T.
,
Yang
,
L. B.
, and
Yang
,
C. M.
,
1998
, “
Breaking Chaotic Switching Using Generalized Synchronization: Examples
,”
IEEE Trans. Circuits Syst. I
,
45
(
10
), pp.
1062
1067
.
31.
Rosenblum
,
M. G.
,
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1996
, “
Phase Synchronization of Chaotic Oscillators
,”
Phys. Rev. Lett.
,
76
(
11
), p.
1804
.
32.
Batista
,
C. A. S.
,
Batista
,
A. M.
,
De Pontes
,
J. A. C.
,
Viana
,
R. L.
, and
Lopes
,
S. R.
,
2007
, “
Chaotic Phase Synchronization in Scale-Free Networks of Bursting Neurons
,”
Phys. Rev. E
,
76
(
1
), p.
016218
.
33.
Xia
,
Y.
,
2009
, “
Lag Synchronization of Unknown Chaotic Delayed Yang-Yang-Type Fuzzy Neural Networks With Noise Perturbation Based on Adaptive Control and Parameter Identification
,”
IEEE Trans. Neural Networks
,
20
(
7
), p.
1165
.
34.
Taghvafard
,
H.
, and
Erjaee
,
G. H.
,
2011
, “
Phase and Anti-Phase Synchronization of Fractional Order Chaotic Systems Via Active Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
4079
4088
.
35.
Li
,
G. H.
,
Zhou
,
S. P.
, and
Yang
,
K.
,
2006
, “
Generalized Projective Synchronization Between Two Different Chaotic Systems Using Active Backstepping Control
,”
Phys. Lett. A
,
355
(
4–5
), pp.
326
330
.
36.
Jia
,
Q.
,
2007
, “
Projective Synchronization of a New Hyperchaotic Lorenz System
,”
Phys. Lett. A
,
370
(
1
), pp.
40
45
.
37.
Runzi
,
L.
,
Yinglan
,
W.
, and
Shucheng
,
D.
,
2011
, “
Combination Synchronization of Three Classic Chaotic Systems Using Active Backstepping Design
,”
Chaos
,
21
(
4
), p.
043114
.
38.
Runzi
,
L.
, and
Yinglan
,
W.
,
2012
, “
Finite-Time Stochastic Combination Synchronization of Three Different Chaotic Systems and Its Application in Secure Communication
,”
Chaos
,
22
(
2
), p.
023109
.
39.
Xi
,
H.
,
Li
,
Y.
, and
Huang
,
X.
,
2015
, “
Adaptive Function Projective Combination Synchronization of Three Different Fractional-Order Chaotic Systems
,”
Optik-Int. J. Light Electron Opt.
,
126
(
24
), pp.
5346
5349
.
40.
Wu
,
Z.
, and
Fu
,
X.
,
2013
, “
Combination Synchronization of Three Different Order Nonlinear Systems Using Active Backstepping Design
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1863
1872
.
41.
Ojo
,
K. S.
,
Njah
,
A. N.
,
Olusola
,
O. I.
, and
Omeike
,
M. O.
,
2014
, “
Generalized Reduced-Order Hybrid Combination Synchronization of Three Josephson Junctions Via Backstepping Technique
,”
Nonlinear Dyn.
,
77
(
3
), pp.
583
595
.
42.
Vincent
,
U. E.
,
Saseyi
,
A. O.
, and
McClintock
,
P. V.
,
2015
, “
Multi-Switching Combination Synchronization of Chaotic Systems
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
845
854
.
43.
Jiang
,
C.
,
Liu
,
S.
, and
Wang
,
D.
,
2015
, “
Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems
,”
Entropy
,
17
(
12
), pp.
5199
5217
.
44.
Sun
,
J.
,
Shen
,
Y.
,
Zhang
,
G.
,
Xu
,
C.
, and
Cui
,
G.
,
2013
, “
Combination–Combination Synchronization Among Four Identical or Different Chaotic Systems
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1211
1222
.
45.
Ojo
,
K. S.
,
Njah
,
A. N.
, and
Olusola
,
O. I.
,
2015
, “
Generalized Function Projective Combination-Combination Synchronization of Chaos in Third Order Chaotic Systems
,”
Chin. J. Phys.
,
53
(
3
), pp.
11
16
.
46.
Mahmoud
,
G. M.
,
Abed-Elhameed
,
T. M.
, and
Ahmed
,
M. E.
,
2016
, “
Generalization of Combination–Combination Synchronization of Chaotic n-Dimensional Fractional-Order Dynamical Systems
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1885
1893
.
47.
Ojo, K. S., Njah, A. N., and Olusola, O. I., 2016, “Generalized Combination-Combination Synchronization of Chaos in Identical Orders Chaotic Systems,”
J. Appl. Nonlinear Dyn.
, 5(1), pp. 43–58.
48.
Sun
,
J.
,
Wang
,
Y.
,
Cui
,
G.
, and
Shen
,
Y.
,
2016
, “
Dynamical Properties and Combination–Combination Complex Synchronization of Four Novel Chaotic Complex Systems
,”
Optik-Int. J. Light Electron Opt.
,
127
(
4
), pp.
1572
1580
.
49.
Jin-E
,
Z.
,
2014
, “
Combination-Combination Hyperchaos Synchronization of Complex Memristor Oscillator System
,”
Math. Probl. Eng.
,
2014
, p.
591089
.
50.
Zhou
,
X.
,
Xiong
,
L.
, and
Cai
,
X.
,
2015
, “
Combination-Combination Synchronization of Four Nonlinear Complex Chaotic Systems
,”
Abstract Appl. Anal.
,
2014
, p.
953265
.
51.
Sun
,
J.
,
Jiang
,
S.
,
Cui
,
G.
, and
Wang
,
Y.
,
2016
, “
Dual Combination Synchronization of Six Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
034501
.
52.
Singh
,
A. K.
,
Yadav
,
V. K.
, and
Das
,
S.
,
2017
, “
Dual Combination Synchronization of the Fractional Order Complex Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011017
.
53.
Sun
,
J.
,
Shen
,
Y.
,
Yin
,
Q.
, and
Xu
,
C.
,
2013
, “
Compound Synchronization of Four Memristor Chaotic Oscillator Systems and Secure Communication
,”
Chaos
,
23
(
1
), p.
013140
.
54.
Sun
,
J.
,
Wang
,
Y.
,
Wang
,
Y.
,
Cui
,
G.
, and
Shen
,
Y.
,
2016
, “
Compound-Combination Synchronization of Five Chaotic Systems Via Nonlinear Control
,”
Optik-Int. J. Light Electron Opt.
,
127
(
8
), pp.
4136
4143
.
55.
Ojo
,
K. S.
,
Njah
,
A. N.
, and
Olusola
,
O. I.
,
2015
, “
Compound-Combination Synchronization of Chaos in Identical and Different Orders Chaotic Systems
,”
Arch. Control Sci.
,
25
(
4
), pp.
463
490
.
56.
Zhang
,
B.
, and
Deng
,
F.
,
2014
, “
Double-Compound Synchronization of Six Memristor-Based Lorenz Systems
,”
Nonlinear Dyn.
,
7
(
4
), pp.
1519
1530
.
57.
Li
,
T.
,
Yu
,
J.
, and
Wang
,
Z.
,
2009
, “
Delay-Range-Dependent Synchronization Criterion for Lur'e Systems With Delay Feedback Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
1796
1803
.
58.
Liao
,
T. L.
, and
Tsai
,
S. H.
,
2000
, “
Adaptive Synchronization of Chaotic Systems and Its Application to Secure Communications
,”
Chaos Solitons Fractals
,
11
(
9
), pp.
1387
1396
.
You do not currently have access to this content.